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Deep Learning I

m A branch of machine learning based on a set of
algorithms that attempt to model high—level
abstractions in data, mostly, based on deep networks.

« Each layer combines Output
input features to produce < >
high—level features :

n Q
0= f(z wix; + 6) Layer 2

* A neural network with Layer 1
many layers can extract ﬁ
high—level features Input
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Stepwise Abstraction I

m Effective in learning high—level representation by
step—wise abstraction

Feature representation [Leel2]

Output
ﬁ 3rd layer
- “Objects”
2nd layer
Layer 2 “Object parts”
1st layer
Layer 1 “Edges”
Input Pixels
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Popular Deep Learning Architectures I

m [raditional neural networks and their extensions
MLP, RBF, auto—encoders, ---

m Stochastic models
Boltzmann machine, RBM, DBN, DBM, ---

m Convolutional neural networks (CNN)
Learns position independent local features
Spatially shared connections
Combines heterogeneous layers

m Recurrent neural networks (RNN)
Neural network with memory
Model for dynamic process
Temporarily shared connections
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Popular Deep Learning Architectures I

m Hybrid models

Convolutional RBM
o CNN + contrastive divergence

Predictive sparse decomposition
0 Sparse coding + deconvolution

Recurrent convolutional neural networks (RCNN)
o Recurrent convolution layer

Long—term recurrent convolutional network
o LSTM + CNN

Attention models
o CNN + glimpse network (RNN)

Adversarial neural networks
o Generative model + discriminative model
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Learning Strategies I

m Supervised learning: “learning with teacher”
Adjust model to produce desired outputs (label)
Optimize network for a specific task

m Unsupervised learning: “learning without teacher”
Clustering

Reproduction
o Feature extraction, data compression
o Layer—wise unsupervised pre—training

Latent variable models
o Hidden cause
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Learning Strategies I

B Semi—supervised learning

Learn from <small volume of labeled data> + <large volume
of unlabeled data>

Improves generalization

m Reinforcement learning: “learning from critics”

Interaction between agent and environment
o Action: agent =2 environment
o Reward: environment - agent

Adjust model to maximize reward
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Why Deep Networks? I

m Efficient in learning high—level feature

High—level features are more informative and robust than
lower—level features

m [ntegrated learning

DNN integrates feature extractor and classifier in a single
network

m Efficient in modeling of highly varying functions

m Large capacity
DNN can learn very well from a huge volume of samples

®m Framework that embraces various methodologies and
techniques
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Challenges with Deep Networks I

m Hard to optimize

Conventional learning algorithm does not work well for deep
fully connected networks starting from random weights

=» New learning algorithms

m A large number of parameters
=» A huge volume of training samples is now available.

=» [echniques to improve generalization ability
Ex) sparse coding, virtual sample generation, dropout

m Requires heavy computation
= Acceleration H/W (GPU, cluster, ASIC, FPGA)
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The Back—Propagation Algorithm I

m Gradient descent algorithm to minimize error E.
0F OE OE anetj:
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Diminishing Gradient Problem I

m BP does not work on deep networks

Error signals from many nodes are blended together.
=» become dim and vague on bottom layers

OUTFUT LAYER

Error signal (6;)
o Signal that guides learning

e & » ‘ ]
Error signal \ /w]
at a non—output node i ><l,

6i =f’(7’l€ti) Wl5 / \
Z - KON

INPUT LAYER
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Layer—wise Unsupervised Pre—training I

m Conventional back—propagation algorithm does not —
work well for deep neural networks starting from
random weights.

m Layer—wise unsupervised pre—training algorithm
Ex) DBN[Hinton2006], stacked auto—encoders[Bengio2006]

First, place the weights near a local optimal position by
unsupervised learning algorithm

Then, conventional supervised learning algorithms work fine

m Based on generative neural networks
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Generative Neural Networks I

m Neural networks with forward—backward connections

Forward connection Backward connection
for “encoding” for “decoding”
Output layer (X\) Output layer (Xy)
Layer 2 (X,) Layer 2 (X,)
Layer 1 (X,) Layer 1 (X,)
Input layer (X;) Input layer (X;)
Feed forward network Forward—backward network
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Layer—wise Unsupervised Pre—training I

m Starting from bottom layer, train each layer to
reproduce the input
Input =» encoding =» hidden =» decoding =» reprod. of input

Output layer (X)
Layer 2 (X,)

1st phase T, 7 w

Layer 1 (X,)
Forward propagation ﬁ C Backward propagation
for encoding for decoding

Input layer (X;)

Forward—backward network
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Layer—wise Unsupervised Pre—training I

m Starting from bottom layer, train each layer to

reproduce the input

Input =» encoding =» hidden =» decoding =» reprod. of input

Output layer (X)

w7 ==

2"d phase

Layer 2 (X,)

Forward propagation ﬁ@

for encoding
Layer 1 (X,)

~Tw <<l

Input layer (X;)

Forward—backward network

Backward propagation
for decoding
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Pretraining—based Methods

m Deep belief network
[Hinton2006]

Stacked RBM

2000 top-level units

/ U
v
10 label units 500 units
This could be the 500 units
top level of
another sensory ﬂ \Hf
pathway 28 x 28
pix el
image

m Stacked

Autoencoders
[Bengio2006]

|

|

-1

P1
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Energy Based Models I

m Energy—based models: probabilistic models that
associate scalar energy to configuration of variables
Ex) Boltzmann machine, MRF, ---

m Probability of energy—based models
e—Energy(X) _ e—Energy(X)
7 o Y e~Energy(X)

P(X) =

0 Z =Y,e EnerayX) is called partition function

m Probability of energy—based models with hidden
nodes

e —Energy(V,H) e —Energy(V,H)

P(V,H) =

~ — Z(V - e—Energy(V,H)
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Restricted Boltzmann Machine I

m Energy of RBM

Energy(V,H) = —=b"V — ¢"H — H'WV |+ b,c: bias vectors
« W: weight matrix

m Probability of (V,H)

e —Energy (V,H) —Energy(V,H)

e

P(V) H) — Z = Z(V H) e—Energy(V,H)

Then,
P(H|V) =11 P(h;|V)
o P(hi*" = 1|V*) = sigmoid(W;V*' + )
P(VIH) = [1; P(v;|H)
o P(vitt = 1|Ht+1) = sigmoid(WH'** + b;)
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Restricted Boltzmann Machine I

= Probability of visible variables
P(V) — ZH P(V, H) = ZHe_EnerQY(V,H;G)

Z

m free energy of visible variables
Marginalization of energies in log domain

FreeEnergy(V) — _]Og(z e—Energy(V,H))
H

Then,

e —FreeEnergy(V)
P(V) = Z
logP(V) = —FreeEnergy(V) —logZ

Handong Global University



Training of RBM [Hinton02] I

m Train weights to minimize Contrastive Divergence

Run MCMC chain V,, V;, V,, -+, V, for n steps starting from
a training sample V,

data reconstruction fantasy

CD,, update after seet ample V,
JOFreeEner V,: 6 JOFreeEner I.:0
gt+1 = gt + n(— gy (Vo )+ gy (Vu; 6)

a6 a0
dEnergy(V,,Hy; 0) O0Energy(V,,H,;0)

PY: T 30

~0° +1(
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Autoencoder I

m Auto—encoder is an ANN
whose desired output is the
same as the input. A

The aim of an auto—encoder is
to learn a compressed

representation (encoding) for a
set of data. B

>y ) <

m [raining algorithm

Given xy, -, X, training vectors
over IRN,

Find weight vectors A and B
that minimize: Z.(y,—x,)?
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Stacked Autoencoders I

m After training, hidden nodes extract features from the
iInput nodes.

m Stacking autoencoders constructs a deep network

N

* p

P1 I 2nd phase

P4

I 1st phase
n | |
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Sparse Autoencoder [LeCun07] I

m Encoder/decoder paradigm
Encoder: f,,,.(Y) = WTY + b,,,,
Decoder: fioc(Z) = WI(Z) + bop,

Y: input vector, Z:. code vector,
W: weight matrix, 1(.): activation function

m Energy—based model

m [he |loss function to minimize
L(Y,Z) = allZ = fonc N5 + 1Y = faec(DII5 + ash(Z) + a, W,
Compatibility between Y and Z: first two terms
Sparsity: h(Z) = Y log(1 + 1%(z))
Regularization: a,||W]|l;
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Denoising Autoencoder [Vincent08]

m Denoising autoencoder

¥
s
'r.&_ AN, Ly(x.z)
fq V=
Y
Y
hY
.\\' -
) . 4 . ) -, \‘\-__ "\.____.-" _J,.' “‘a__,-’ I\“h--ff___. . F ) / . \ / A
X X z

Figure 1: The denoising autoencoder architecture. An example x 1s stochastically corrupted (via
gn) to X. The autoencoder then maps it to v (via encoder fy) and attempts to reconstruct

x via decoder gy. producing reconstruction z. Reconstruction error 1s measured by loss
Ly(x,z).
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Convolutional Neural Networks I

m Designed to learn position—independent |local
features
Spatially shared connections

m Combines heterogeneous layers
Convolution, max—pooling, fully-connected, -
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Convolution Layers

m Odd—-numbered layers in
low/middle—level of CNN

m Nodes on each layer are grouped
into 2D planes (or feature maps)

m Each plane is connected to one or
more input planes

m Each node computes weighted sum
of input nodes in a small region

m All nodes on a plane share weight
set

050

6] &7 &7 |

=» Extract feature by convolution
operation

<
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Convolution Layers I

m Propagation formula

Xpij) = ( z z W(apun) X(@iSprujspsv) T 05 )

qECy 0su,v=Mp-1

q: input plane, p: output plane, M.: mask width/height

- # of input planes connected to p*" output plane

W (g puv)- Weight at (u,v) on the mask from g™ plane to p™ plane
Xg,,i, jy- feature at (1,J) on pth plane of layer n

S,. stride (horizontal/vertical distance between adjacent windows)
6y bias
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Convolution Operation

m Convolution operation e el 8

source pixel. The source pixel is then replaced ©x0)

with a weighted sum of itself and nearby pixels. zg : ?;

0x1)
(0x0)
0x1)
+(-4x2)

Source pixel

m Convolution filters

New pixel value (destination pixel)

000
Identity 010
000
1 0 -1
0o 0 0
-1 0 1
0 1 0 iy 1 1 11
Edge detection 1 4 1 xv ur 9 1 11
0 10 G B |
R Gaussian bl 1
S gt = aussian blur

AOD0XMAnoN 16
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Convolution Layers

m Learning filters from = Multi—channel

data convolution

EW¥ E=E=E W

CEld #¥8 E=EEE £ (z)
EEE FiEd AN

AW SEE M Clamson Stexiog
AW EEE NN = pooling
=== PR _EEE G (Zk—1)
=g SEE BUE e
aaad®  IDNDNNN e T + non-linearity
BhE ECE DD {#a1}+ Ni
Ll sss (NEE %

unn EH Ok A= ""k‘—l(zk—‘l_)
ﬂﬂm ﬂn r . . n (patch extraction)
MNEN EES 113

=== DNk rnna
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Max—Pooling Layers I

m Even—numbered layers in
low/middle—level of CNN

m Nodes on each layer are grouped
Into planes R e

m Each plane is connected to only
one input plane

m Each node chooses maximum
among input nodes in a small
region

)j

- ] 7]

=» Abstract features

Reduces feature dimension

lgnores positional variation of feature
elements

Handong Global University

/E ] f//
| [



Max—Pooling Layers I

m Propagation formula

n — n—1
Xwip =/ (Osuf,ﬁlj‘,@‘n_lX(p,isn+u,jsn+v))

p: output plane, M : window width/height
X(pi - Teature at (i,j) on p™ plane of layer n
S,. stride (horizontal/vertical distance between adjacent windows)
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Fully—connected Layers I

m [op 2~—3 layers of CNN
m 1D structure

m Each node is fully connected to
all input nodes

m Each node computes weighted - ©
sum of all input nodes
O

=» Classify input pattern with high-—
level features extracted by previous :
layers

\:%;@?/
OO
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Fully—connected Layers I

m Propagation formula

XD =f (2 Wi Xq Tt + 0{})
q

p: output node
X} feature at on p* node of layer n

w(”g'p): connection weight between X7~ and X}
6y bias
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Gradient—based Learning [LeCun98] I

m [rains the whole network to minimize a single error

function E.
Wew OF
T W
X
s At layer 77 Output layer (Xy)
0E  0X, OF 0E  0X, OE @
ow, oJow,odX, 0X,_1 0X,_10X, Layer 2 (XZ)
Layer 1 (X
m At layer n—7 yﬁ“)
0E  0X,_, OE 0E 90Xy, OE
oW, . oW, ,0X, ., 0X, , 0X, ,0X, Input layer (X,)
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LeCun’s Algorithm vs. Conventional BP I

OE 0E dox™ 0E 0X™ ONET"™ _ OE ONET"

= — — = Aan_l
own oxnown OXNMIONETT own ONETT" own
n _ OE _aE oxm ot n
AN = ONET™ ~ 9XM ONET™ A"F(NET™)
o Let Ar = 2E
axn
OF _ OFE X" _ OE 9X™ ONET" _ 9E ONET" _ rnyym

9xXn—1  gxmgxn-1  gxXM INET™ 9x"—1  QNET™ gxn-1
A1 = AMIEY(NET™ 1) = A"WF'(NET™ 1)
This is matrix notation of conventional BP formula

577 = [ (net? ™) X, W8]

Handong Global University



LeCun’s Backpropagation Algorithm (1/2) I

Given an input vector XY, desired output D, and an error

criterion
1 Zc(XéV _ dc)z

E —
MSE 2 C

m Propagate feature from 1st to N |ayers

e

m Compute AN = aa ~ of the output layer
OE _ (Xév _ c)
axN C

5N =
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LeCun’s Backpropagation Algorithm (2/2) I

m Repeat for each n=N, N-1, -, 1
Compute 67 = §'f'(net]")

Compute gradient

O e _
w7 = 67X = &6 f'(net]) X1
Update weights (can be delayed in batch mode training)
oF
W[} — Wl-? =/ GWiT}
Compute A*1 = a;f_l for the preceding layer
5=y wpsh
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References I

m BNN tutorial

m [ STM tutorial

Handong Global University


http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://colah.github.io/posts/2015-08-Understanding-LSTMs

Recurrent Neural Networks I

m Motivation: analyzing time series data

Many real world data are dependent on the previous or next
data.

Feed forward networks assumes all inputs are independent
from each other

input layer hidden layer output layer
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Recurrent Neural Networks I

m Recurrent neural network
Neural networks with recurrent connection
State of nodes affect the output and the next state
Model for dynamic process
Temporarily shared connections

0

O Ot—l ot Ot 1
A
VT W VT )% vV
SOD w dt—l _ St Osm
T Unfold T W W w
U U U U

X X, X X

m Currently, the most promisinég arclﬁitecture for NLP,
speech recognition, handwriting recognition,
automatic image captioning
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Training RNN I

m BPTT (back—propagation through time)
Back—propagation algorithm applied to unfolded BRNN
For each training sample, sum up the gradient at each time

step 9E _ Z IE,
il f o

Eo Eq Ey E3 Ey

e Lol I ]
~O=E=EO=E—E

[T 01 ]

I i I I3 Iy
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Problems in RNN I

m Vanishing gradient problem

Time

m Learning long—term dependency

b o @6?@

[
A— AL A—— A — A— A
b b b . & o o
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LSTM Networks I

m LSTM: Long Short=Term Memory

Designed to learning long—term dependency

RNN with explicit gate to control data flow
o Input/output/forget gates

Outputs < ) ' ) ' ' , ( | , ‘ )
Hidden » > > > > » |
Layer

A B A A . A A
- @ O O O O O O
Time 1 2 3 4 S 6 7
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LSTM Networks I

m Structure of LSTM networks
o. gate networks

& Q) ®

t t t
4 ) 4 ) % )
—»>—® ® > —>
Ganh>
A iﬁ’i A
(0] (0] tanh (0]
| | 1 _J > -

2 ® &
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Object Image Recognition I

m |[mageNet Large Scale Visual Recognition Challenge
( )
1000 object categories
Training set: 1,281,167 images
Validation set: 50,000 images
Test set: 100,000 images

Handong Global University


http://www.image-net.org/

Examples of ImageNet Images

Z ‘ person

person : .
'person

helmet

motorcycle
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ILSVRC2012 Results

m CNN defeated other systems by large margin in
ILSVRC2012

Team name Filename Error (5 guesses) Description CN N
Usi tra training datz

Supervision test-preds-141-146.2005-131- 0.15315 frzl:g:li: ZNZ“;:ﬁ 2;-1:

¥ 137-145-146 2011-145 e AgETE T
release
test-preds-131-137-145-135- Usi ly lied
SuperVision sstprecs 0.16422 =g oy SUpple
145f txt training data

Weighted sum of scores
from each classifier with

] pred_FYs_wLACs_weighted.txt 0.26172 SIFT+FY, LEP+FV,
GIST+FV, and
CSIFT+FY, respectively.
Weighted sum of scores

1SI pred_FVs_weighted. txt 0.26602 frem classifiers using
each FV.
Maive sum of scores from

151 pred_FVs_summed.txt 0.26646 classifiers using each
FV.

T 1T T T 1
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ILSVRC2013 Results

J, Imagehlet Large Scale Vi x

€ - C [} www.image-net.org/challenges/LSVRC/2013/results.php

Task 2: Classification

Legend: D
Dark grey background = outside training data A" high ran kers use CNNS
|Clarifai | Average of multiple models on original training data. 1011743
|Clarifai | Another attempt at multiple models on original training data. 0.1215 |
|Clarifai |Single model trained on original data 0 12535
NUS adaptive non-parametric rectification of all outputs from CNNs and refined PASCAL 012953
WG 12 winning solution, with further retraining on the validation set. ’
adaptive non-parametric rectification of all outputs from CNNs and refined PASCAL
NUS S . 0.13303
WC12 winning solution.
ZF |5 models (4 different architectrues) trained on original data. 0 13511]
Andrew This is an ensemble of convolutional neural networks combining multiple transformations 013555
Howard for training and testing and models operating at different resolutions. ’
Andrew This method explores re weighting the predictions from different data transformation and 0 13564
Howard ensemble members in the previous submission. ’
IF 5 models trained on original data, 1 big. 013748 -
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Face Recognition I

m Taigman, et al, “DeepFace: Closing the Gap to Human-
Level Performance in Face Verification”, 2014

97.25% on LFW (Labeled Faces in the Wild)

m Fan, et al, “Learning Deep Face Representation”, 2014
97.30% on LFW

m Sun, et al, “Deep Learning Face Representation from
Predicting 10,000 Classes”, 2014

99.15 on LFW

m Shroff, et al, “FaceNet: A Unified Embedding for Face
Recognition and Clustering”

99.63% on LFW
95.12% on YouTube Face DB
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DeepFace [Taigman2014]

m Feature extraction by CNN
Train a CNN-based face recognizer

Represent the input face image by the output of (N—1)th
layer

1
|

| REPRESENTATION |
| _ SFClabels |

o
|
|

-~ Cl: M2: C3: La: LS: L6: F7:
Calista_Flockhart_0002.jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21x21

_n
®

Figure 2. Outline of the DeepFace architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three
locally-connected layers and two fully-connected layers. Colors illustrate outputs for each layer. The net includes more than 120 million parameters, where
more than 95% come from the local and fully connected layers.
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Deep Learning in Speech Recognition

m Deep Neural Networks for Acoustic Modeling in
Speech Recognition [Hinton2012]

[TABLE 1] COMPARISONS AMONG THE REPORTED
SPEAKER-INDEPENDENT (SI) PHONETIC RECOGNITION ACCU-

RACY RESULTS ON TIMIT CORE TEST SET WITH 192 SENTENC-

ES.
METHOD PER
CD-HMM [26] 27.3%
AUGMENTED CONDITIONAL RANDOM FIELDS [26] 26.6%
RANDOMLY INITIALIZED RECURRENT NEURAL NETS [27] 26.1%
BAYESIAN TRIPHONE GMM-HMM [28] 25.6%
MONOPHONE HTMS [29] 24.8%
HETEROGENEQUS CLASSIFIERS [30] 24.4%
Deep |earning MONOPHONE RANDOMLY INITIALIZED DNNs (SEX LAYERS) [13] 23.4%
MONOPHONE DBN-DNNs (SIX LAYERS) [13] 22.4%
MONOPHONE DBN-DNNs WITH MMI TRAINING [31] 22.1%
TRIPHONE GMM-HMMs DT W/ BMMI [32] 21.7%
MONOPHONE DBN-DNNs ON FBANK (EIGHT LAYERS) [13] 20.7%

MONOPHONE MCRBM-DBN-DNNs ON FBANK (FIVE LAYERS) [33]  20.5%

arnuolilyg Qiovdl Ullivel -



Deep Learning in Speech Recognition I

m LSTM (long short—term memory)

Recurrent neural network (RNN) architecture
Achieved 17.7% on TIMIT dataset

Recurrent neural networks LSTM
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Natural Language Processing I

m Open—-domain question answering

Question in NL Unstructured Texts
<& <+
Information
Interface to DB Extraction
<& <+
KB query Structured knowledge

e.g. relation(e;, e,)

— T

> Knowledge Base ® Answer
(large scale, general, noisy)

Handong Global University
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Semantic Parsing using CNN [Yih2014] I

m Semantic parsing
Entity mention <-> KB entity
Relation pattern <=> KB relation

m CNN-based semantic similarity model (CNNSM)

Maps variable—length word sequence to low—dimensional
vector

Compares word sequences by cosine distance.
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Word Embedding

m Embedded vector space
Ex) ‘Paris — France + Berlin’ provide a vector near ‘Germany’

German
Xy
... Berlin
France X
K-
oo Paris
X
Spain
)
Portugal e Madrid
-..___ Lisbon
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CNN-based Semantic Model [Yih2014] I

Semantic layer: y 500

Semantic projection matrix: Ws

Max pooling layer: v

Max pooling operation

Convolutional layer: h;

Convolution matrix: W.

count vector of

Word hashing layer: 15K :
ord hashing layer: f, | letter—trigram

Word hashing matrix: W

Word sequence: x; <5>
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References I

m Deep Reinforcement Learning [Silver16]

m Human-level control through deep reinforcement
learning [Mnih15]

m Mastering the game of Go with deep neural networks
and tree search [Silver16]

m |Introduction to Reinforcement Learning [K.Kim13]
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Reinforcement Learning I

RL is a general-purpose framework for decision-making
» RL is for an agent with the capacity to act
» Each action influences the agent's future state
> Success is measured by a scalar reward signal

» Goal: select actions to maximise future reward
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Major Components of RL Agents I

m An RL agent may include one or more of these
components

Policy: agent’s behavior function for each state
Value function: how good is each state and/or action

Model: agent’s representation of environment
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Policy I

» A policy is the agent's behaviour

» |t is a map from state to action:
» Deterministic policy: a = 7(s)
» Stochastic policy: w(a|s) = P[als]

P, @ls)

3 — i E i t : ‘

2 | | . | :
e e

by ) 1 i p :

B
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Value Function I

» A value function is a prediction of future reward
» “How much reward will | get from action a in state s7"

» (-value function gives expected total reward

» from state s and action a
» under policy 7
» with discount factor ~

R7(s,a) =E [f’r+1 + Y2 + Vo ress + ... | 5@}

» Value functions decompose into a Bellman equation

Q™ (s,a) =By » [r+7Q7(s'.d") | s. 4]
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Model

observation // \ \ 3 , ’ '\j, | action
o [\ D E a » Model is learnt from experience
=y » Acts as proxy for environment
I » Planner interacts with model

» e.g. using lookahead search
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Approaches to Reinforcement Learning I

Value-based RL

» Estimate the optimal value function Q*(s, a)

» This is the maximum value achievable under any policy
Policy-based RL

» Search directly for the optimal policy 7*

» This is the policy achieving maximum future reward
Model-based RL

» Build a model of the environment

» Plan (e.g. by lookahead) using model
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Agenda I

m [ntroduction to Deep Learning
m RBM and Auto—Encoders

m Convolutional Neural Networks
m Recurrent Neural Networks

m Reinforcement Learning

m Deep Reinforcement Learning

B Q&A
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Deep Reinforcement Learning I

We seek a single agent which can solve any human-level task

» RL defines the objective
» DL gives the mechanism

» RL 4+ DL = general intelligence
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Deep Reinforcement Learning I

» Use deep neural networks to represent

» Value function
» Policy
» Model

» Optimise loss function by stochastic gradient descent
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Q—Networks I

Represent value function by Q-network with weights w

Q(s,a,w) ~ Q*(s, a)

Q(s,a,w) Q(s,aq,w) - Q(s,a,,,W)
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Deep Reinforcement Learning in Atari
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DQN in Atari

» End-to-end learning of values Q(s, a) from pixels s
» Input state s is stack of raw pixels from last 4 frames
» OQutput is Q(s, a) for 18 joystick /button positions

» Reward is change in score for that step

Convolution Convolution Fully connected Fully connected

<

ﬂ‘bK(—K&N;Df
+i++=0+01+-0+-01+1+
@] (@) (¢] (¢] (©] (] (e] (®]

Network architecture and hyperparameters fixed across all games
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AlphaGo

m Conventional tree search
Infeasible for huge search space

m Monte Carlo Tree Search (MCTS)

Random sampling
Policy network, value networks guide random sampling
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Exhaustive Search I
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CNNs in AlphaGo I

m Policy network m Value network

Move probabilities Evaluation
<

Position Position
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Reducing Search Space I

m Policy network reduces breath
m Value network reduces depth

&
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\

/
=
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Neural Network Training Pipeline I

m Supervised learning of policy network
m Reinforcement learning of policy network
m Reinforcement learning of value network

Human expert Supervised Learning Reinforcement Learning Self-play data Value network
positions policy network policy network

Self Play Self Play
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Supervised Learning of Policy Network I

m Policy network: 12 layer convolutional neural network

m Training data: 30M positions from human expert games
(KGS 5+ dan)

m Training algorithm: maximize likelihood by stochastic
gradient descent

0log ps(als)
o

Ao

m Training time: 4 weeks on 50 GPUs using Google Cloud

m Results: 57% accuracy on held out test data (state—of-
the art was 44%)
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Reinforcement Learning of Policy Network I

m Policy network: 12 layer convolutional neural network

m [raining data: games of self—-play between policy
network

m Training algorithm: maximize wins z (1 or —1)by
policy gradient reinforcement learning

Ao o 0logp,(als) z

oo

m Training time: 1 week on 50 GPUs using Google
Cloud

m Results: 80% vs supervised learning. Raw network
~3 amateur dan
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Reinforcement Learning of Value Network I

m Value network: 12 layer convolutional neural network
m Training data: 30 million games of self—play

m Training algorithm: minimize MSE by stochastic
gradient descent

31)9(.5‘)

Af 90 (z —vg(s))

m Training time: 1 week on 50 GPUs using Google
Cloud

m Results: First strong position evaluation function —
previously thought impossible
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