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Deep Learning

 A branch of machine learning based on a set of 
algorithms that attempt to model high-level 
abstractions in data, mostly, based on deep networks.
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…

• Each layer combines 
input features to produce 
high-level features

• A neural network with 
many layers can extract 
high-level features
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Stepwise Abstraction

 Effective in learning high-level representation by 
step-wise abstraction
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Layer 2

Output

…

[Lee12]
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Popular Deep Learning Architectures

 Traditional neural networks and their extensions
 MLP, RBF, auto-encoders, …

 Stochastic models
 Boltzmann machine, RBM, DBN, DBM, …

 Convolutional neural networks (CNN)
 Learns position independent local features
 Spatially shared connections
 Combines heterogeneous layers

 Recurrent neural networks (RNN)
 Neural network with memory
 Model for dynamic process
 Temporarily shared connections
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Popular Deep Learning Architectures

 Hybrid models
 Convolutional RBM

 CNN + contrastive divergence

 Predictive sparse decomposition

 Sparse coding + deconvolution

 Recurrent convolutional neural networks (RCNN)

 Recurrent convolution layer

 Long-term recurrent convolutional network

 LSTM + CNN

 Attention models

 CNN + glimpse network (RNN)

 Adversarial neural networks

 Generative model + discriminative model
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Learning Strategies

 Supervised learning: “learning with teacher”
 Adjust model to produce desired outputs (label)

 Optimize network for a specific task

 Unsupervised learning: “learning without teacher”
 Clustering

 Reproduction

 Feature extraction, data compression

 Layer-wise unsupervised pre-training

 Latent variable models

 Hidden cause
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Learning Strategies

 Semi-supervised learning
 Learn from <small volume of labeled data> + <large volume 

of unlabeled data>

 Improves generalization

 Reinforcement learning: “learning from critics”
 Interaction between agent and environment

 Action: agent  environment

 Reward: environment  agent

 Adjust model to maximize reward
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Why Deep Networks?

 Efficient in learning high-level feature
 High-level features are more informative and robust than 

lower-level features

 Integrated learning
 DNN integrates feature extractor and classifier in a single 

network

 Efficient in modeling of highly varying functions

 Large capacity
 DNN can learn very well from a huge volume of samples

 Framework that embraces various methodologies and 
techniques
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Challenges with Deep Networks

 Hard to optimize
 Conventional learning algorithm does not work well for deep 

fully connected networks starting from random weights

 New learning algorithms

 A large number of parameters
 A huge volume of training samples is now available.

 Techniques to improve generalization ability

Ex) sparse coding, virtual sample generation, dropout

 Requires heavy computation
 Acceleration H/W (GPU, cluster, ASIC, FPGA)
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The Back-Propagation Algorithm

 Gradient descent algorithm to minimize error E.
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Diminishing Gradient Problem

 BP does not work on deep networks
 Error signals from many nodes are blended together.

 become dim and vague on bottom layers

 Error signal (𝛿𝑖)

 Signal that guides learning

 Error signal

at a non-output node i

𝛿𝑖 = 𝑓′(𝑛𝑒𝑡𝑖)෍

𝑗

𝑤𝑖𝑗𝛿𝑗
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Layer-wise Unsupervised Pre-training

 Conventional back-propagation algorithm does not -
work well for deep neural networks starting from 
random weights.

 Layer-wise unsupervised pre-training algorithm
Ex) DBN[Hinton2006], stacked auto-encoders[Bengio2006]

 First, place the weights near a local optimal position by 
unsupervised learning algorithm

 Then, conventional supervised learning algorithms work fine

 Based on generative neural networks
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Generative Neural Networks

 Neural networks with forward–backward connections
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Layer-wise Unsupervised Pre-training

 Starting from bottom layer, train each layer to 
reproduce the input
Input  encoding  hidden  decoding  reprod. of input
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Output layer (XN)
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Forward-backward network

Forward propagation
for encoding

Backward propagation
for decoding

1st phase
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Layer-wise Unsupervised Pre-training

 Starting from bottom layer, train each layer to 
reproduce the input
Input  encoding  hidden  decoding  reprod. of input
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Forward-backward network

Forward propagation
for encoding
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Pretraining-based Methods

 Deep belief network 
[Hinton2006]

 Stacked RBM

 Stacked 
Autoencoders 
[Bengio2006]
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Energy Based Models

 Energy-based models: probabilistic models that 
associate scalar energy to configuration of variables
Ex) Boltzmann machine, MRF, …

 Probability of energy-based models

 𝑃 𝑋 =
𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑋)

𝑍
=

𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑋)

σ𝑋 𝑒
−𝐸𝑛𝑒𝑟𝑔𝑦(𝑋)

 𝑍 = σ𝑋 𝑒
−𝐸𝑛𝑒𝑟𝑔𝑦(𝑋) is called partition function

 Probability of energy-based models with hidden 
nodes

 𝑃 𝑉, 𝐻 =
𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑉,𝐻)

𝑍
=

𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑉,𝐻)

σ(𝑉,𝐻) 𝑒
−𝐸𝑛𝑒𝑟𝑔𝑦(𝑉,𝐻)
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Restricted Boltzmann Machine

 Energy of RBM
 𝐸𝑛𝑒𝑟𝑔𝑦 𝑉,𝐻 = −𝑏𝑇𝑉 − 𝑐𝑇𝐻 − 𝐻𝑇𝑊𝑉

 Probability of (V,H)

𝑃 𝑉,𝐻 =
𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑉,𝐻)

𝑍
=

𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑉,𝐻)

σ(𝑉,𝐻) 𝑒
−𝐸𝑛𝑒𝑟𝑔𝑦(𝑉,𝐻)

Then,
 𝑃 𝐻 𝑉 = ς𝑗𝑃(ℎ𝑗|𝑉)

 𝑃 ℎ𝑗
𝑡+1 = 1|𝑉𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑗𝑉

𝑡 + 𝑐𝑗)

 𝑃 𝑉 𝐻 = ς𝑖 𝑃(𝑣𝑖|𝐻)

 𝑃 𝑣𝑖
𝑡+1 = 1|𝐻𝑡+1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖

𝑇𝐻𝑡+1 + 𝑏𝑖)

• b,c: bias vectors 
• W: weight matrix
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Restricted Boltzmann Machine

 Probability of visible variables

 𝑃 𝑉 = σ𝐻 𝑃 𝑉,𝐻 = σ𝐻
𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑉,𝐻;𝜃)

𝑍

 Free energy of visible variables
 Marginalization of energies in log domain

𝐹𝑟𝑒𝑒𝐸𝑛𝑒𝑟𝑔𝑦 𝑉 = −log(෍

𝐻

𝑒−𝐸𝑛𝑒𝑟𝑔𝑦(𝑉,𝐻))

 Then,

𝑃 𝑉 =
𝑒−𝐹𝑟𝑒𝑒𝐸𝑛𝑒𝑟𝑔𝑦(𝑉)

𝑍
log𝑃 𝑉 = −𝐹𝑟𝑒𝑒𝐸𝑛𝑒𝑟𝑔𝑦(𝑉) − log𝑍
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Training of RBM [Hinton02]

 Train weights to minimize Contrastive Divergence
1. Run MCMC chain V0, V1, V2, …, Vn for n steps starting from 

a training sample V0

2. CDn update after seeing sample Vn

𝜃𝑡+1 = 𝜃𝑡 + 𝜂(−
𝜕𝐹𝑟𝑒𝑒𝐸𝑛𝑒𝑟𝑔𝑦 𝑉0; 𝜃

𝜕𝜃
+
𝜕𝐹𝑟𝑒𝑒𝐸𝑛𝑒𝑟𝑔𝑦 𝑉𝑛; 𝜃

𝜕𝜃
)

 𝜃𝑡 + 𝜂(−
𝜕𝐸𝑛𝑒𝑟𝑔𝑦 𝑉0, 𝐻0; 𝜃

𝜕𝜃
+
𝜕𝐸𝑛𝑒𝑟𝑔𝑦 𝑉𝑛, 𝐻𝑛; 𝜃

𝜕𝜃
)
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Autoencoder

 Auto-encoder is an ANN 
whose desired output is the 
same as the input.
 The aim of an auto-encoder is 

to learn a compressed 
representation (encoding) for a 
set of data.

 Training algorithm
 Given x1,…,xm training vectors 

over IRN,

 Find weight vectors A and B 
that minimize: i(yi-xi)

2

yi

xi
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Stacked Autoencoders

 After training, hidden nodes extract features from the 
input nodes.

 Stacking autoencoders constructs a deep network

2nd phase

1st phase
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Sparse Autoencoder [LeCun07]

 Encoder/decoder paradigm
 Encoder: 𝑓𝑒𝑛𝑐 𝑌 = 𝑊𝑇𝑌 + 𝑏𝑒𝑛𝑐
 Decoder: 𝑓𝑑𝑒𝑐 𝑍 = 𝑊𝑙(𝑍) + 𝑏𝑒𝑛𝑐
Y: input vector, Z: code vector,

W: weight matrix, l(.): activation function

 Energy-based model

 The loss function to minimize
𝐿 𝑌, 𝑍 = 𝛼𝑒 𝑍 − 𝑓𝑒𝑛𝑐 𝑌 2

2 + 𝑌 − 𝑓𝑑𝑒𝑐 𝑍 2
2 + 𝛼𝑠ℎ 𝑍 + 𝛼𝑟 𝑊 1

 Compatibility between Y and Z: first two terms

 Sparsity: ℎ 𝑍 = σ𝑖 log(1 + 𝑙2(𝑧𝑖))

 Regularization: 𝛼𝑟 𝑊 1
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Denoising Autoencoder [Vincent08]

 Denoising autoencoder
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Convolutional Neural Networks

 Designed to learn position-independent local 
features
 Spatially shared connections

 Combines heterogeneous layers
 Convolution, max-pooling, fully-connected, …
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Convolution Layers

 Odd-numbered layers in 
low/middle-level of CNN

 Nodes on each layer are grouped 
into 2D planes (or feature maps)

 Each plane is connected to one or 
more input planes

 Each node computes weighted sum
of input nodes in a small region

 All nodes on a plane share weight 
set

 Extract feature by convolution 
operation
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Convolution Layers

 Propagation formula

𝑋(𝑝,𝑖,𝑗)
𝑛 = 𝑓 ෍

𝑞∈𝐶𝑝
𝑛

෍

0≤𝑢,𝑣≤𝑀𝑛−1

𝑤(𝑞,𝑝,𝑢,𝑣)
𝑛 𝑋 𝑞,𝑖𝑆𝑛+𝑢,𝑗𝑆𝑛+𝑣

𝑛−1 + 𝜃𝑝
𝑛

 q: input plane, p: output plane, Mn: mask width/height

 𝐶𝑝
𝑛: # of input planes connected to pth output plane

 𝑤(𝑞,𝑝,𝑢,𝑣)
𝑛 : weight at (u,v) on the mask from qth plane to pth plane

 𝑋(𝑝,𝑖,𝑗)
𝑛 : feature at (i,j) on pth plane of layer n

 𝑆𝑛: stride (horizontal/vertical distance between adjacent windows)

 𝜃𝑝
𝑛: bias
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Convolution Operation

 Convolution operation

 Convolution filters
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Convolution Layers

 Learning filters from 
data

 Multi-channel 
convolution
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Max-Pooling Layers

 Even-numbered layers in 
low/middle-level of CNN

 Nodes on each layer are grouped 
into planes

 Each plane is connected to only 
one input plane

 Each node chooses maximum
among input nodes in a small 
region

 Abstract features
 Reduces feature dimension

 Ignores positional variation of feature 
elements
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Max-Pooling Layers

 Propagation formula

𝑋 𝑝,𝑖,𝑗
𝑛 = 𝑓 max

0≤𝑢,𝑣≤𝑀𝑛−1
𝑋 𝑝,𝑖𝑆𝑛+𝑢,𝑗𝑆𝑛+𝑣
𝑛−1

 p: output plane, Mn: window width/height

 𝑋(𝑝,𝑖,𝑗)
𝑛 : feature at (i,j) on pth plane of layer n

 𝑆𝑛: stride (horizontal/vertical distance between adjacent windows)
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Fully-connected Layers

 Top 2~3 layers of CNN

 1D structure

 Each node is fully connected to 
all input nodes

 Each node computes weighted 
sum of all input nodes

 Classify input pattern with high-
level features extracted by previous 
layers
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Fully-connected Layers

 Propagation formula

𝑋𝑝
𝑛 = 𝑓 ෍

𝑞

𝑤(𝑞,𝑝)
𝑛 𝑋𝑞

𝑛−1 + 𝜃𝑝
𝑛

 p: output node

 𝑋𝑝
𝑛: feature at on pth node of layer n

 𝑤(𝑞,𝑝)
𝑛 : connection weight between 𝑋𝑞

𝑛−1 and 𝑋𝑝
𝑛

 𝜃𝑝
𝑛: bias
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Gradient-based Learning [LeCun98]

 Trains the whole network to minimize a single error 
function E.

 At layer n

 At layer n-1
Layer 1 (X1)

Input layer (X0)

W1

Layer 2 (X2)

W2

Output layer (XN)

WN

…
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

𝜕𝐸

𝜕𝑊𝑛 =
𝜕𝐸

𝜕𝑋𝑛
𝜕𝑋𝑛

𝜕𝑊𝑛 =
𝜕𝐸

𝜕𝑋𝑛
𝜕𝑋𝑛

𝜕𝑁𝐸𝑇𝑛
𝜕𝑁𝐸𝑇𝑛

𝜕𝑊𝑛 =
𝜕𝐸

𝜕𝑁𝐸𝑇𝑛
𝜕𝑁𝐸𝑇𝑛

𝜕𝑊𝑛 = Δ𝑛𝑋𝑛−1

 Δ𝑛 =
𝜕𝐸

𝜕𝑁𝐸𝑇𝑛
=

𝜕𝐸

𝜕𝑋𝑛
𝜕𝑋𝑛

𝜕𝑁𝐸𝑇𝑛
= ഥΔ𝑛𝐹′(𝑁𝐸𝑇𝑛)

 Let ഥΔ𝑛 ≡
𝜕𝐸

𝜕𝑋𝑛



𝜕𝐸

𝜕𝑋𝑛−1
=

𝜕𝐸

𝜕𝑋𝑛
𝜕𝑋𝑛

𝜕𝑋𝑛−1
=

𝜕𝐸

𝜕𝑋𝑛
𝜕𝑋𝑛

𝜕𝑁𝐸𝑇𝑛
𝜕𝑁𝐸𝑇𝑛

𝜕𝑋𝑛−1
=

𝜕𝐸

𝜕𝑁𝐸𝑇𝑛
𝜕𝑁𝐸𝑇𝑛

𝜕𝑋𝑛−1
= Δ𝑛𝑊𝑛

 Δ𝑛−1 = ഥΔ𝑛−1𝐹′ 𝑁𝐸𝑇𝑛−1 = Δ𝑛𝑊𝑛𝐹′ 𝑁𝐸𝑇𝑛−1

This is matrix notation of conventional BP formula

 𝛿𝑖
𝑛−1 = 𝑓′(𝑛𝑒𝑡𝑖

𝑛−1)σ𝑗𝑊𝑖𝑗
𝑛𝛿𝑗

𝑛

LeCun’s Algorithm vs. Conventional BP
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LeCun’s Backpropagation Algorithm (1/2)

Given an input vector X0, desired output D, and an error 
criterion

𝐸𝑀𝑆𝐸 =
1

2

σ𝑐 𝑋𝑐
𝑁 − 𝑑𝑐

2

𝐶

 Propagate feature from 1st to Nth layers

𝑋𝑗
𝑛 = 𝑓 ෍

𝑖=0

𝐼−1

𝑊𝑖𝑗
𝑛𝑋𝑖

𝑛−1 + 𝜃𝑗

 Compute ഥΔ𝑁 =
𝜕𝐸

𝜕𝑋𝑁
of the output layer

ҧ𝛿𝑐
𝑁 =

𝜕𝐸

𝜕𝑋𝑐
𝑁 =

𝑋𝑐
𝑁 − 𝑑𝑐
𝐶
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LeCun’s Backpropagation Algorithm (2/2)

 Repeat for each n=N, N-1, …, 1
 Compute 𝛿𝑗

𝑛 = ҧ𝛿𝑗
𝑛𝑓′(𝑛𝑒𝑡𝑗

𝑛)

 Compute gradient
𝜕𝐸

𝜕𝑊𝑖𝑗
𝑛 = 𝛿𝑗

𝑛𝑋𝑖
𝑛−1 = ҧ𝛿𝑗

𝑛𝑓′(𝑛𝑒𝑡𝑗
𝑛) 𝑋𝑖

𝑛−1

 Update weights (can be delayed in batch mode training)

𝑊𝑖𝑗
𝑛 ← 𝑊𝑖𝑗

𝑛 − 𝜂
𝜕𝐸

𝜕𝑊𝑖𝑗
𝑛

 Compute ഥΔ𝑛−1 =
𝜕𝐸

𝜕𝑋𝑛−1
for the preceding layer

ҧ𝛿𝑖
𝑛−1 =෍

𝑗

𝑊𝑖𝑗
𝑛𝛿𝑗

𝑛
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References

 RNN tutorial
 http://www.wildml.com/2015/09/recurrent-neural-

networks-tutorial-part-1-introduction-to-rnns/

 LSTM tutorial
 http://colah.github.io/posts/2015-08-Understanding-

LSTMs

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Recurrent Neural Networks

 Motivation: analyzing time series data
 Many real world data are dependent on the previous or next 

data.

 Feed forward networks assumes all inputs are independent 
from each other
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Recurrent Neural Networks

 Recurrent neural network
 Neural networks with recurrent connection

 State of nodes affect the output and the next state

 Model for dynamic process

 Temporarily shared connections

 Currently, the most promising architecture for NLP, 
speech recognition, handwriting recognition, 
automatic image captioning
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Training RNN

 BPTT (back-propagation through time)
 Back-propagation algorithm applied to unfolded RNN

 For each training sample, sum up the gradient at each time 
step

.
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Problems in RNN

 Vanishing gradient problem

 Learning long-term dependency
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LSTM Networks

 LSTM: Long Short-Term Memory
 Designed to learning long-term dependency

 RNN with explicit gate to control data flow

 Input/output/forget gates
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LSTM Networks

 Structure of LSTM networks
 : gate networks
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Object Image Recognition

 ImageNet Large Scale Visual Recognition Challenge 
(http://www.image-net.org)
 1000 object categories

 Training set: 1,281,167 images

 Validation set: 50,000 images

 Test set: 100,000 images

http://www.image-net.org/
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Examples of ImageNet Images
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ILSVRC2012 Results

 CNN defeated other systems by large margin in  
ILSVRC2012

CNN
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ILSVRC2013 Results

All high rankers use CNNs
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Face Recognition

 Taigman, et al, “DeepFace: Closing the Gap to Human-
Level Performance in Face Verification”, 2014
 97.25% on LFW (Labeled Faces in the Wild)

 Fan, et al, “Learning Deep Face Representation”, 2014
 97.30% on LFW

 Sun, et al, “Deep Learning Face Representation from 
Predicting 10,000 Classes”, 2014
 99.15 on LFW

 Shroff, et al, “FaceNet: A Unified Embedding for Face 
Recognition and Clustering”
 99.63% on LFW
 95.12% on YouTube Face DB
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DeepFace [Taigman2014]

 Feature extraction by CNN
 Train a CNN-based face recognizer

 Represent the input face image by the output of (N-1)th

layer
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Deep Learning in Speech Recognition

 Deep Neural Networks for Acoustic Modeling in 
Speech Recognition [Hinton2012]

Deep learning
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Deep Learning in Speech Recognition

 LSTM (long short-term memory)
 Recurrent neural network (RNN) architecture

 Achieved 17.7% on TIMIT dataset

Recurrent neural networks LSTM
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Natural Language Processing

 Open-domain question answering

Information 

Extraction

Knowledge Base
(large scale, general, noisy)

Unstructured Texts

Natural Language

Interface to DB

Question in NL

Structured knowledge
e.g. relation(e1, e2)

KB query
population(?, newyork)

Answer
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Semantic Parsing using CNN [Yih2014]

 Semantic parsing
 Entity mention   <->  KB entity

 Relation pattern <->  KB relation

 CNN-based semantic similarity model (CNNSM)
 Maps variable-length word sequence to low-dimensional 

vector

 Compares word sequences by cosine distance.
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Word Embedding

 Embedded vector space
Ex) ‘Paris – France + Berlin’ provide a vector near ‘Germany’



Handong Global University

CNN-based Semantic Model [Yih2014]

count vector of
letter-trigram
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Agenda

 Introduction to Deep Learning

 RBM and Auto-Encoders

 Convolutional Neural Networks

 Recurrent Neural Networks

 Reinforcement Learning

 Deep Reinforcement Learning

 Q&A
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References

 Deep Reinforcement Learning [Silver16]

 Human-level control through deep reinforcement 
learning [Mnih15]

 Mastering the game of Go with deep neural networks 
and tree search [Silver16]

 Introduction to Reinforcement Learning [K.Kim13]
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Reinforcement Learning
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Major Components of RL Agents

 An RL agent may include one or more of these 
components

 Policy: agent’s behavior function for each state

 Value function: how good is each state and/or action

 Model: agent’s representation of environment
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Policy
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Value Function
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Model
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Approaches to Reinforcement Learning
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Agenda

 Introduction to Deep Learning

 RBM and Auto-Encoders

 Convolutional Neural Networks

 Recurrent Neural Networks

 Reinforcement Learning

 Deep Reinforcement Learning

 Q&A
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Deep Reinforcement Learning
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Deep Reinforcement Learning



Handong Global University

Q-Networks
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Deep Reinforcement Learning in Atari
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DQN in Atari
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AlphaGo

 Conventional tree search
 Infeasible for huge search space

 Monte Carlo Tree Search (MCTS)
 Random sampling

 Policy network, value networks guide random sampling
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Exhaustive Search
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CNNs in AlphaGo

 Policy network  Value network
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Reducing Search Space

 Policy network reduces breath

 Value network reduces depth
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Neural Network Training Pipeline

 Supervised learning of policy network

 Reinforcement learning of policy network

 Reinforcement learning of value network
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Supervised Learning of Policy Network

 Policy network: 12 layer convolutional neural network

 Training data: 30M positions from human expert games 
(KGS 5+ dan)

 Training algorithm: maximize likelihood by stochastic 
gradient descent

 Training time: 4 weeks on 50 GPUs using Google Cloud

 Results: 57% accuracy on held out test data (state-of-
the art was 44%)
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Reinforcement Learning of Policy Network

 Policy network: 12 layer convolutional neural network

 Training data: games of self-play between policy 
network

 Training algorithm: maximize wins z (1 or -1)by 
policy gradient reinforcement learning

 Training time: 1 week on 50 GPUs using Google 
Cloud

 Results: 80% vs supervised learning. Raw network 
~3 amateur dan
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Reinforcement Learning of Value Network

 Value network: 12 layer convolutional neural network

 Training data: 30 million games of self-play

 Training algorithm: minimize MSE by stochastic 
gradient descent

 Training time: 1 week on 50 GPUs using Google 
Cloud

 Results: First strong position evaluation function -
previously thought impossible


