Deep Learning Architectures and Algorithms

In-Jung Kim Handong Global University 2016. 12. 2.

Agenda

- Introduction to Deep Learning
- RBM and Auto-Encoders
- Convolutional Neural Networks
- Recurrent Neural Networks
- Reinforcement Learning
- Deep Reinforcement Learning

Q&A

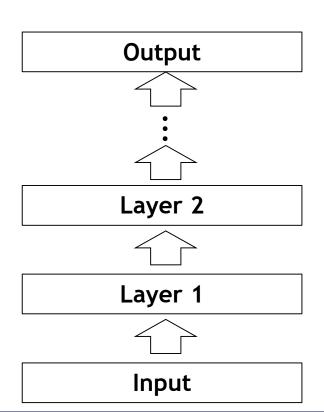
Handong Global University

Deep Learning

- A branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data, mostly, based on deep networks.
 - Each layer combines input features to produce high-level features

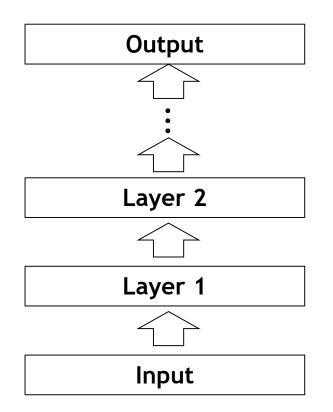
$$o = f(\sum_{i=1}^n w_i x_i + \theta)$$

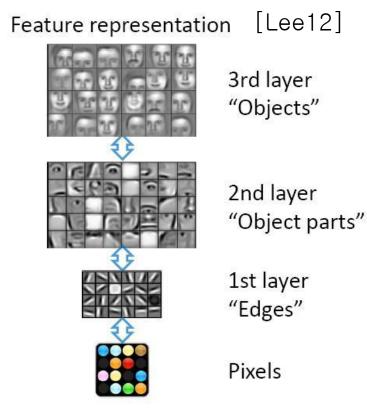
 A neural network with many layers can extract high-level features



Stepwise Abstraction

Effective in learning high-level representation by step-wise abstraction





Popular Deep Learning Architectures

- Traditional neural networks and their extensions
 MLP, RBF, auto-encoders, …
- Stochastic models
 - Boltzmann machine, RBM, DBN, DBM, …
- Convolutional neural networks (CNN)
 - Learns position independent local features
 - Spatially shared connections
 - Combines heterogeneous layers
- Recurrent neural networks (RNN)
 - Neural network with memory
 - Model for dynamic process
 - Temporarily shared connections

Popular Deep Learning Architectures

Hybrid models

- Convolutional RBM
 - CNN + contrastive divergence
- Predictive sparse decomposition
 - Sparse coding + deconvolution
- Recurrent convolutional neural networks (RCNN)
 Recurrent convolution layer
- Long-term recurrent convolutional network
 LSTM + CNN
- Attention models
 - CNN + glimpse network (RNN)
- Adversarial neural networks
 - Generative model + discriminative model

Learning Strategies

Supervised learning: "learning with teacher"

- Adjust model to produce desired outputs (label)
- Optimize network for a specific task

Unsupervised learning: "learning without teacher"

- Clustering
- Reproduction
 - □ Feature extraction, data compression
 - Layer-wise unsupervised pre-training
- Latent variable models
 - Hidden cause

Learning Strategies

- Semi-supervised learning
 - Learn from <small volume of labeled data> + <large volume of unlabeled data>
 - Improves generalization

Reinforcement learning: "learning from critics"

- Interaction between agent and environment
 - □ Action: agent → environment
 - □ Reward: environment → agent
- Adjust model to maximize reward

Why Deep Networks?

Efficient in learning high-level feature

- High-level features are more informative and robust than lower-level features
- Integrated learning
 - DNN integrates feature extractor and classifier in a single network
- Efficient in modeling of highly varying functions
- Large capacity
 - DNN can learn very well from a huge volume of samples
- Framework that embraces various methodologies and techniques

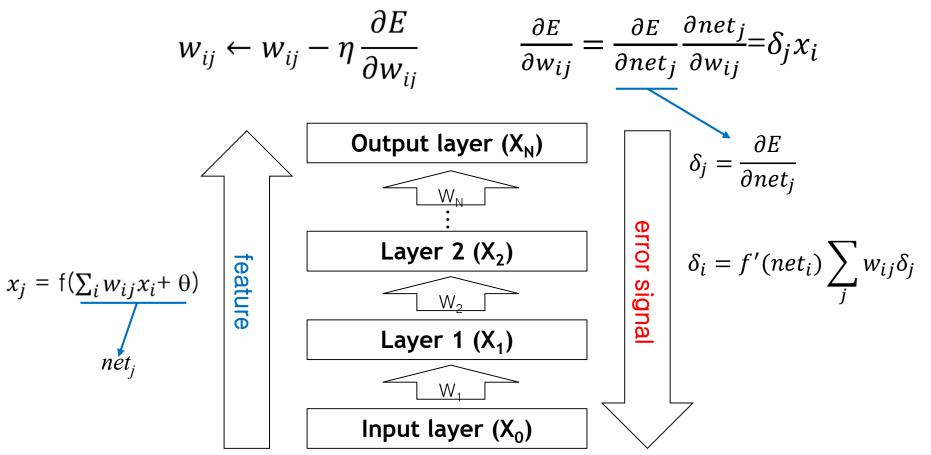
Challenges with Deep Networks

Hard to optimize

- Conventional learning algorithm does not work well for deep fully connected networks starting from random weights
- ➔ New learning algorithms
- A large number of parameters
 - ➔ A huge volume of training samples is now available.
 - Techniques to improve generalization ability
 Ex) sparse coding, virtual sample generation, dropout
- Requires heavy computation
 - → Acceleration H/W (GPU, cluster, ASIC, FPGA)

The Back–Propagation Algorithm

Gradient descent algorithm to minimize error E.

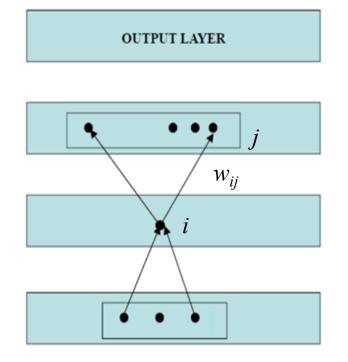


Diminishing Gradient Problem

BP does not work on deep networks

- Error signals from many nodes are blended together.
- → become dim and vague on bottom layers
- Error signal (δ_i)
 □ Signal that guides learning
- Error signal at a non-output node i

$$\delta_i = f'(net_i) \sum_j w_{ij} \delta_j$$



INPUT LAYER

Agenda

- Introduction to Deep Learning
- RBM and Auto-Encoders
- Convolutional Neural Networks
- Recurrent Neural Networks
- Reinforcement Learning
- Deep Reinforcement Learning

Q&A

Layer-wise Unsupervised Pre-training

- Conventional back-propagation algorithm does not work well for deep neural networks starting from random weights.
- Layer-wise unsupervised pre-training algorithm
 Ex) DBN[Hinton2006], stacked auto-encoders[Bengio2006]
 - First, place the weights near a local optimal position by unsupervised learning algorithm
 - Then, conventional supervised learning algorithms work fine
- Based on generative neural networks

Generative Neural Networks

Neural networks with forward-backward connections



Feed forward network

Forward-backward network

Handong Global University

Layer-wise Unsupervised Pre-training

 Starting from bottom layer, train each layer to reproduce the input

Input → encoding → hidden → decoding → reprod. of input

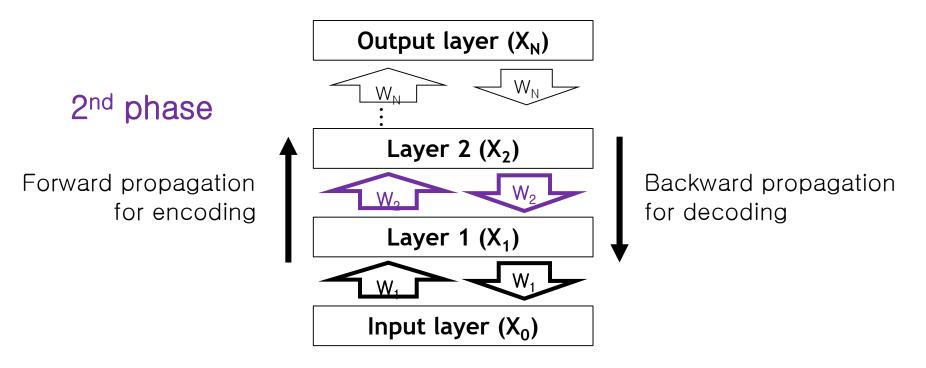


Forward-backward network

Layer-wise Unsupervised Pre-training

Starting from bottom layer, train each layer to reproduce the input

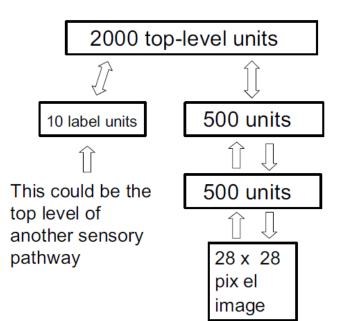
Input → encoding → hidden → decoding → reprod. of input



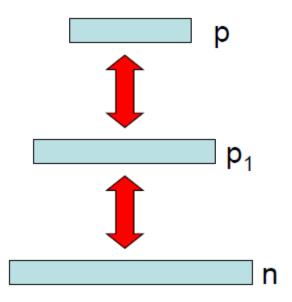
Forward-backward network

Pretraining-based Methods

- Deep belief network [Hinton2006]
 - Stacked RBM



Stacked
 Autoencoders
 [Bengio2006]



Energy Based Models

- Energy-based models: probabilistic models that associate scalar energy to configuration of variables
 Ex) Boltzmann machine, MRF, …
- Probability of energy-based models

•
$$P(X) = \frac{e^{-Energy(X)}}{Z} = \frac{e^{-Energy(X)}}{\sum_X e^{-Energy(X)}}$$

• $Z = \sum_X e^{-Energy(X)}$ is called partition function

Probability of energy-based models with hidden nodes

•
$$P(V,H) = \frac{e^{-Energy(V,H)}}{Z} = \frac{e^{-Energy(V,H)}}{\sum_{(V,H)} e^{-Energy(V,H)}}$$

Restricted Boltzmann Machine

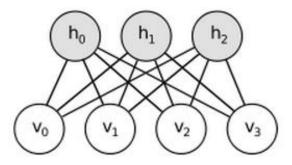
Energy of RBM
Energy(V, H) = -b^TV - c^TH - H^TWV
b,c: bias vectors
W: weight matrix

Probability of (V, H) $P(V, H) = \frac{e^{-Energy(V, H)}}{Z} = \frac{e^{-Energy(V, H)}}{\sum_{(V, H)} e^{-Energy(V, H)}}$

Then,

• $P(H|V) = \prod_{j} P(h_{j}|V)$ • $P(h_{j}^{t+1} = 1|V^{t}) = sigmoid(W_{j}V^{t} + c_{j})$ • $P(V|H) = \prod_{i} P(v_{i}|H)$

$$\square P(v_i^{t+1} = 1 | H^{t+1}) = sigmoid(W_i^T H^{t+1} + b_i)$$



Restricted Boltzmann Machine

Probability of visible variables
 P(V) = \sum_H P(V, H) = \sum_H \frac{e^{-Energy(V, H; \theta)}}{Z}

Free energy of visible variables
 Marginalization of energies in log domain
 FreeEnergy(V) = -log(\sum_H e^{-Energy(V,H)})

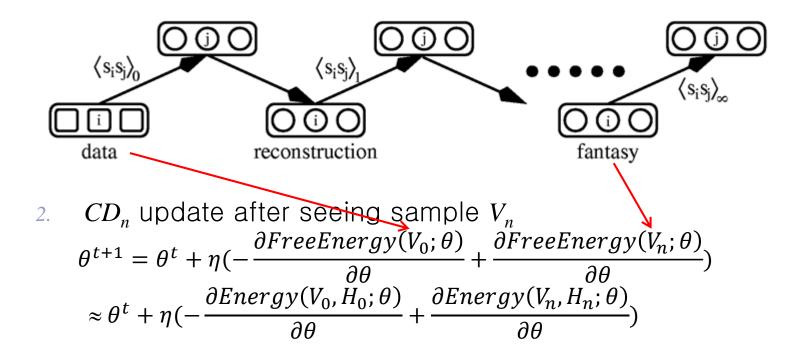
Then,

$$P(V) = \frac{e^{-FreeEnergy(V)}}{Z}$$
$$\log P(V) = -FreeEnergy(V) - \log Z$$

Training of RBM [Hinton02]

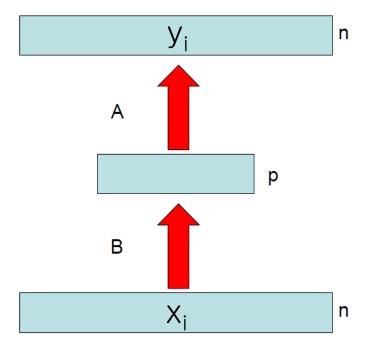
Train weights to minimize Contrastive Divergence

1. Run MCMC chain V_0 , V_1 , V_2 , \cdots , V_n for *n* steps starting from a training sample V_0



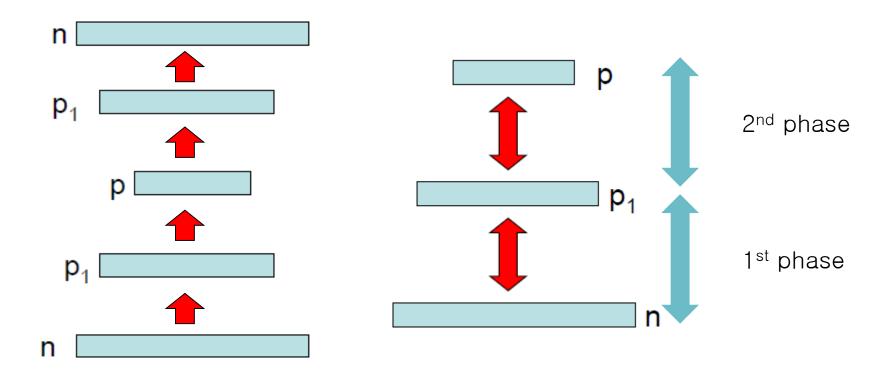
Autoencoder

- Auto-encoder is an ANN whose desired output is the same as the input.
 - The aim of an auto-encoder is to learn a compressed representation (encoding) for a set of data.
- Training algorithm
 - Given x₁,...,x_m training vectors over IR^N,
 - Find weight vectors A and B that minimize: Σ_i(y_i-x_i)²



Stacked Autoencoders

- After training, hidden nodes extract features from the input nodes.
- Stacking autoencoders constructs a deep network



Sparse Autoencoder [LeCun07]

Encoder/decoder paradigm

- Encoder: $f_{enc}(Y) = W^T Y + b_{enc}$
- Decoder: $f_{dec}(Z) = Wl(Z) + b_{enc}$
- *Y*: input vector, *Z*: code vector,

W: weight matrix, l(.): activation function

Energy-based model

- The loss function to minimize $L(Y,Z) = \alpha_e \|Z - f_{enc}(Y)\|_2^2 + \|Y - f_{dec}(Z)\|_2^2 + \alpha_s h(Z) + \alpha_r \|W\|_1$
 - Compatibility between Y and Z: first two terms
 - Sparsity: $h(Z) = \sum_i \log(1 + l^2(z_i))$
 - Regularization: $\alpha_r ||W||_1$

Denoising Autoencoder [Vincent08]

Denoising autoencoder

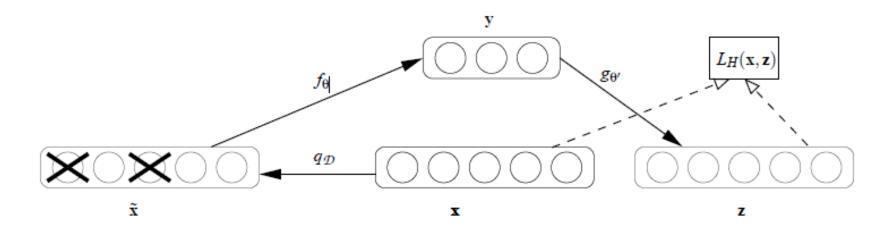


Figure 1: The denoising autoencoder architecture. An example x is stochastically corrupted (via $q_{\mathcal{D}}$) to $\tilde{\mathbf{x}}$. The autoencoder then maps it to y (via encoder f_{θ}) and attempts to reconstruct x via decoder $g_{\theta'}$, producing reconstruction z. Reconstruction error is measured by loss $L_H(\mathbf{x}, \mathbf{z})$.

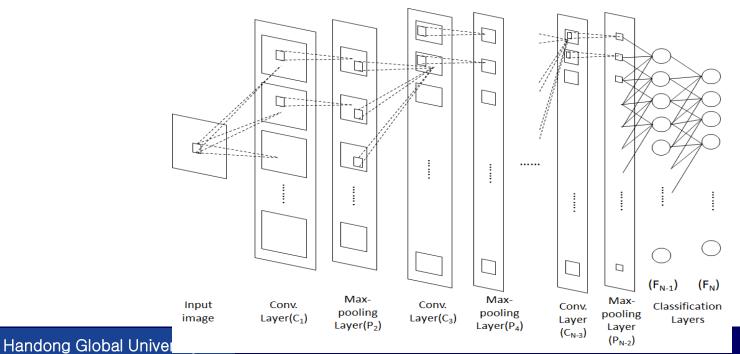
Agenda

- Introduction to Deep Learning
- RBM and Auto-Encoders
- Convolutional Neural Networks
- Recurrent Neural Networks
- Reinforcement Learning
- Deep Reinforcement Learning

Q&A

Convolutional Neural Networks

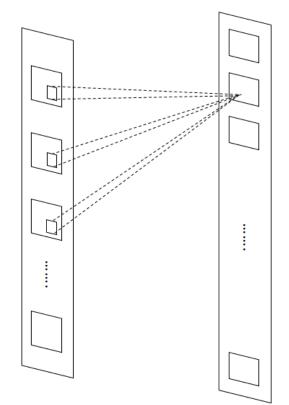
- Designed to learn position-independent local features
 - Spatially shared connections
- Combines heterogeneous layers
 - Convolution, max-pooling, fully-connected, …



Convolution Layers

- Odd-numbered layers in low/middle-level of CNN
- Nodes on each layer are grouped into 2D planes (or feature maps)
- Each plane is connected to one or more input planes
- Each node computes weighted sum of input nodes in a small region
- All nodes on a plane share weight set

Extract feature by convolution operation



Convolution Layers

Propagation formula

$$X_{(p,i,j)}^{n} = f\left(\sum_{q \in C_{p}^{n}} \sum_{0 \le u, v \le M_{n} - 1} w_{(q,p,u,v)}^{n} X_{(q,iS_{n} + u,jS_{n} + v)}^{n-1} + \theta_{p}^{n}\right)$$

- q: input plane, p: output plane, M_n : mask width/height
- C_p^n : # of input planes connected to p^{th} output plane
- $w_{(q,p,u,v)}^n$: weight at (u,v) on the mask from q^{th} plane to p^{th} plane
- $X_{(p,i,j)}^n$: feature at (i,j) on p^{th} plane of layer n
- S_n : stride (horizontal/vertical distance between adjacent windows)
- θ_p^n : bias

Convolution Operation

Convolution operation

(4 × 0) (0 × 0) Center element of the kernel is placed over the (0 x 0) source pixel. The source pixel is then replaced (0 × 0) with a weighted sum of itself and nearby pixels. (0 x 1) (0 x 1) (0×0) Source pixel (0 x 1) + (-4 x 2) -8 0 0 Convolution kernel (emboss) New pixel value (destination pixel)

Convolution filters

Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	6
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	

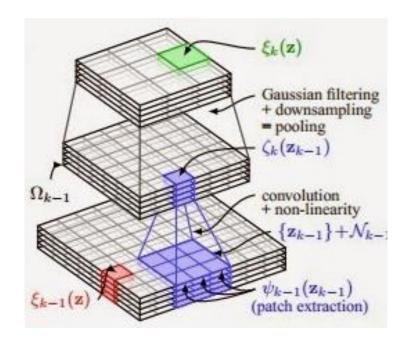
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	C.
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	S
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	C

Handong Globar onnerels

Convolution Layers

Learning filters from data

Multi-channel convolution



Max-Pooling Layers

- Even-numbered layers in low/middle-level of CNN
- Nodes on each layer are grouped into planes
- Each plane is connected to only one input plane
- Each node chooses maximum among input nodes in a small region
- ➔ Abstract features
 - Reduces feature dimension
 - Ignores positional variation of feature elements



Max–Pooling Layers

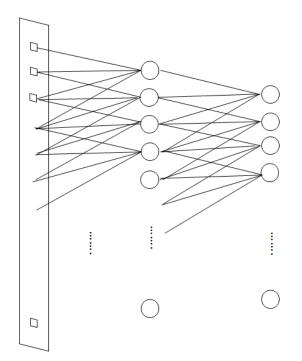
Propagation formula

$$X_{(p,i,j)}^{n} = f\left(\max_{0 \le u, v \le M_{n} - 1} X_{(p,iS_{n} + u,jS_{n} + v)}^{n-1}\right)$$

- *p*: output plane, M_n : window width/height
- $X_{(p,i,j)}^n$: feature at (i,j) on p^{th} plane of layer n
- S_n : stride (horizontal/vertical distance between adjacent windows)

Fully-connected Layers

- Top 2~3 layers of CNN
- 1D structure
- Each node is fully connected to all input nodes
- Each node computes weighted sum of all input nodes
- Classify input pattern with highlevel features extracted by previous layers



Fully-connected Layers

Propagation formula

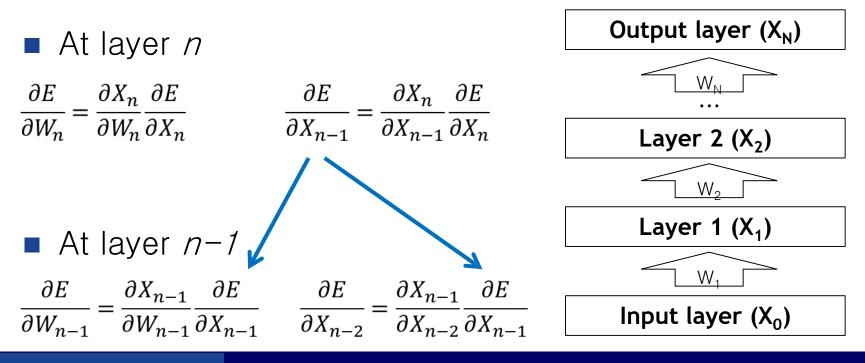
$$X_p^n = f\left(\sum_q w_{(q,p)}^n X_q^{n-1} + \theta_p^n\right)$$

- *p*: output node
- X_p^n : feature at on p^{th} node of layer *n*
- $w_{(q,p)}^n$: connection weight between X_q^{n-1} and X_p^n
- θ_p^n : bias

Gradient-based Learning [LeCun98]

Trains the whole network to minimize a single error function *E*.

$$W \leftarrow W - \eta \frac{\partial E}{\partial W}$$



Handong Global University

LeCun's Algorithm vs. Conventional BP

$$\frac{\partial E}{\partial W^n} = \frac{\partial E}{\partial X^n} \frac{\partial X^n}{\partial W^n} = \frac{\partial E}{\partial X^n} \frac{\partial X^n}{\partial NET^n} \frac{\partial NET^n}{\partial W^n} = \frac{\partial E}{\partial NET^n} \frac{\partial NET^n}{\partial W^n} = \Delta^n X^{n-1}$$

$$\Delta^n = \frac{\partial E}{\partial NET^n} = \frac{\partial E}{\partial X^n} \frac{\partial X^n}{\partial NET^n} = \overline{\Delta}^n F'(NET^n)$$

$$\Box \text{ Let } \overline{\Delta}^n \equiv \frac{\partial E}{\partial X^n}$$

$$\frac{\partial E}{\partial X^{n-1}} = \frac{\partial E}{\partial X^n} \frac{\partial X^n}{\partial X^{n-1}} = \frac{\partial E}{\partial X^n} \frac{\partial X^n}{\partial NET^n} \frac{\partial NET^n}{\partial X^{n-1}} = \frac{\partial E}{\partial NET^n} \frac{\partial NET^n}{\partial X^{n-1}} = \Delta^n W^n$$

$$\Delta^{n-1} = \overline{\Delta}^{n-1} F'(NET^{n-1}) = \Delta^n W^n F'(NET^{n-1})$$
This is matrix notation of conventional BP formula

•
$$\delta_i^{n-1} = f'(net_i^{n-1})\sum_j W_{ij}^n \delta_j^n$$

LeCun's Backpropagation Algorithm (1/2)

Given an input vector X^0 , desired output D, and an error criterion

$$E_{MSE} = \frac{1}{2} \frac{\sum_{c} (X_c^N - d_c)^2}{C}$$

Propagate feature from 1st to Nth layers $X_j^n = f\left(\sum_{i=0}^{I-1} W_{ij}^n X_i^{n-1} + \theta_j\right)$

• Compute
$$\overline{\Delta}^N = \frac{\partial E}{\partial X^N}$$
 of the output layer
 $\overline{\delta}_c^N = \frac{\partial E}{\partial X_c^N} = \frac{(X_c^N - d_c)}{C}$

LeCun's Backpropagation Algorithm (2/2)

- Repeat for each $n=N, N-1, \dots, 1$
 - Compute $\delta_j^n = \overline{\delta}_j^n f'(net_j^n)$
 - Compute gradient $\frac{\partial E}{\partial W_{ij}^n} = \delta_j^n X_i^{n-1} = \bar{\delta}_j^n f'(net_j^n) X_i^{n-1}$
 - Update weights (can be delayed in batch mode training) $W_{ij}^n \leftarrow W_{ij}^n \eta \frac{\partial E}{\partial W_{ij}^n}$

• Compute
$$\overline{\Delta}^{n-1} = \frac{\partial E}{\partial X^{n-1}}$$
 for the preceding layer
 $\overline{\delta}_i^{n-1} = \sum_j W_{ij}^n \delta_j^n$

Agenda

- Introduction to Deep Learning
- RBM and Auto-Encoders
- Convolutional Neural Networks
- Recurrent Neural Networks
- Reinforcement Learning
- Deep Reinforcement Learning

Q&A

References

RNN tutorial

<u>http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/</u>

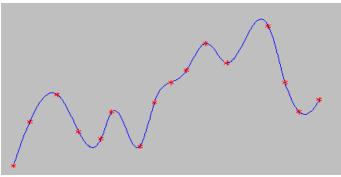
LSTM tutorial

<u>http://colah.github.io/posts/2015-08-Understanding-LSTMs</u>

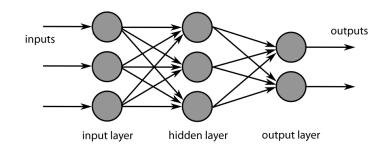
Recurrent Neural Networks

Motivation: analyzing time series data

 Many real world data are dependent on the previous or next data.



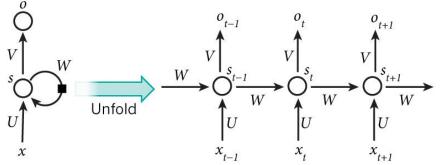
Feed forward networks assumes all inputs are independent from each other



Recurrent Neural Networks

Recurrent neural network

- Neural networks with recurrent connection
- State of nodes affect the output and the next state
- Model for dynamic process
- Temporarily shared connections



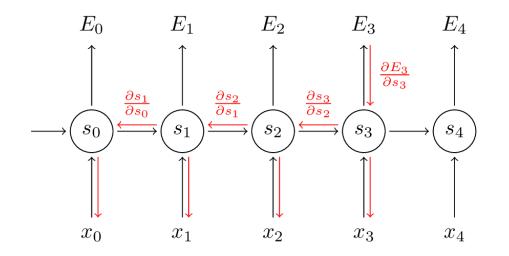
 Currently, the most promising architecture for NLP, speech recognition, handwriting recognition, automatic image captioning

Training RNN

BPTT (back-propagation through time)

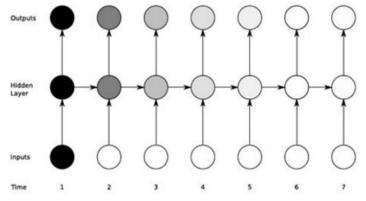
- Back-propagation algorithm applied to unfolded RNN
- For each training sample, sum up the gradient at each time step
 ar

$$\frac{\partial E}{\partial W} = \sum_{t} \frac{\partial E_t}{\partial W}$$

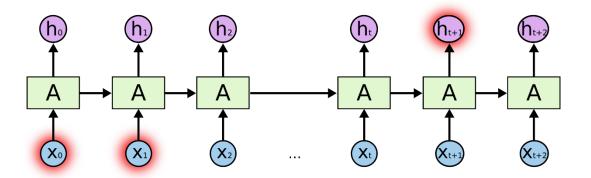


Problems in RNN

Vanishing gradient problem



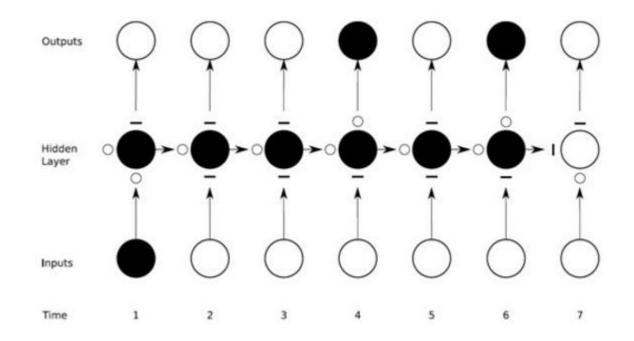
Learning long-term dependency



LSTM Networks

LSTM: Long Short-Term Memory

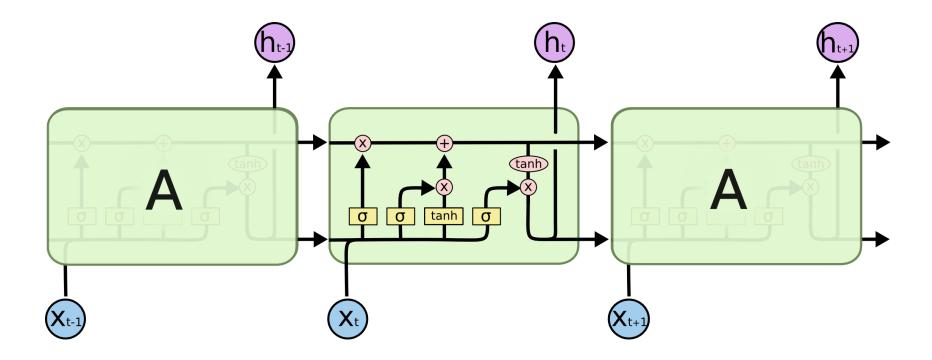
- Designed to learning long-term dependency
- RNN with explicit gate to control data flow
 Input/output/forget gates



LSTM Networks

Structure of LSTM networks

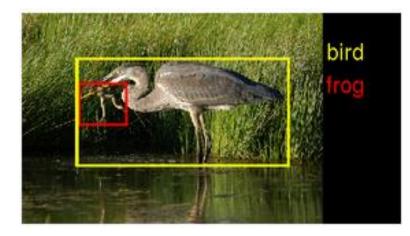
σ: gate networks

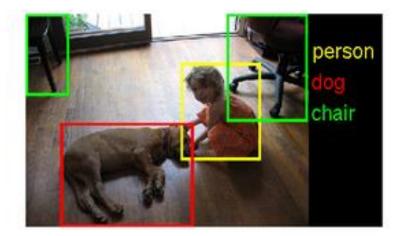


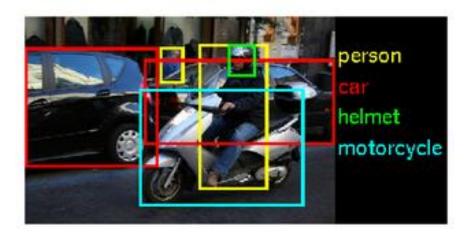
Object Image Recognition

- ImageNet Large Scale Visual Recognition Challenge (<u>http://www.image-net.org</u>)
 - 1000 object categories
 - Training set: 1,281,167 images
 - Validation set: 50,000 images
 - Test set: 100,000 images

Examples of ImageNet Images







ILSVRC2012 Results

CNN defeated other systems by large margin in ILSVRC2012

Team name	Filename	Error (5 guesses)	Description	CNN
SuperVision	test-preds-141-146.2009-131- 137-145-146.2011-145f.	0.15315	Using extra training data from ImageNet Fall 2011 release	
SuperVision	test-preds-131-137-145-135- 145f.txt	0.16422	Using only supplied training data	
ISI	pred_FVs_wLACs_weighted.txt	0.26172	Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.	
ISI	pred_FVs_weighted.txt	0.26602	Weighted sum of scores from classifiers using each FV.	
ISI	pred_FVs_summed.txt	0.26646	Naive sum of scores from classifiers using each FV.	

ILSVRC2013 Results

) www.ima	ge-net.org/challenges/LSVRC/2013/results.php		
UIUC-IFP	Convnet for object detection. 0.010489 0		
Task 2: 0	Classification		
⊥egend: Dark grey ba	ckground = outside training data All high rankers us	All high rankers use CN	
Team nan	ie Commont	Error	
Clarifai	Multiple models trained on the original data plus an additional model trained on 5000 categories.	0.11197	
Clarifai	Multiple models trained on the original data plus an additional model trained on other 1000 category data.	0.11537	
Clarifai	Average of multiple models on original training data.	0.11743	
Clarifai	Another attempt at multiple models on original training data.	0.1215	
Clarifai	Single model trained on original data.	0.12535	
NUS	adaptive non-parametric rectification of all outputs from CNNs and refined PASCAL VOC12 winning solution, with further retraining on the validation set.	0.12953	
NUS	adaptive non-parametric rectification of all outputs from CNNs and refined PASCAL VOC12 winning solution.	0.13303	
ZF	5 models (4 different architectrues) trained on original data.	0.13511	
Andrew Howard	This is an ensemble of convolutional neural networks combining multiple transformations for training and testing and models operating at different resolutions.	0.13555	
Andrew Howard	This method explores re weighting the predictions from different data transformation and ensemble members in the previous submission.	0.13564	
ZF	5 models trained on original data, 1 big.	0.13748	

Handong Global University

Face Recognition

- Taigman, et al, "DeepFace: Closing the Gap to Human-Level Performance in Face Verification", 2014
 97.25% on LFW (Labeled Faces in the Wild)
- Fan, et al, "Learning Deep Face Representation", 2014
 97.30% on LFW
- Sun, et al, "Deep Learning Face Representation from Predicting 10,000 Classes", 2014
 99.15 on LFW
- Shroff, et al, "FaceNet: A Unified Embedding for Face Recognition and Clustering"
 - 99.63% on LFW
 - 95.12% on YouTube Face DB

DeepFace [Taigman2014]

Feature extraction by CNN

- Train a CNN-based face recognizer
- Represent the input face image by the output of (N-1)th layer

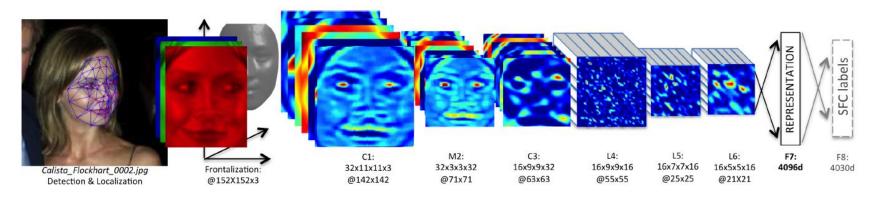


Figure 2. Outline of the *DeepFace* architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate outputs for each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.

Handong Global University

Deep Learning in Speech Recognition

Deep Neural Networks for Acoustic Modeling in Speech Recognition [Hinton2012]

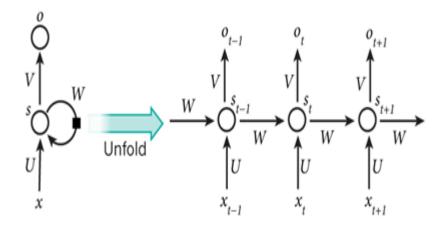
> [TABLE 1] COMPARISONS AMONG THE REPORTED SPEAKER-INDEPENDENT (SI) PHONETIC RECOGNITION ACCU-RACY RESULTS ON TIMIT CORE TEST SET WITH 192 SENTENC-ES.

		<u>/</u>
	METHOD	PER
	CD-HMM [26]	27.3%
	AUGMENTED CONDITIONAL RANDOM FIELDS [26]	26.6%
	RANDOMLY INITIALIZED RECURRENT NEURAL NETS [27]	26.1%
	BAYESIAN TRIPHONE GMM-HMM [28]	25.6%
	MONOPHONE HTMS [29]	24.8%
	HETEROGENEOUS CLASSIFIERS [30]	24.4%
Deep learning	MONOPHONE RANDOMLY INITIALIZED DNNs (SIX LAYERS) [13]	23.4%
	MONOPHONE DBN-DNNs (SIX LAYERS) [13]	22.4%
	MONOPHONE DBN-DNNs WITH MMI TRAINING [31]	22.1%
	TRIPHONE GMM-HMMs DT W/ BMMI [32]	21.7%
	MONOPHONE DBN-DNNs ON FBANK (EIGHT LAYERS) [13]	20.7%
	MONOPHONE MCRBM-DBN-DNNs ON FBANK (FIVE LAYERS) [33]	20.5%
Tanuong Giobal Oniver		

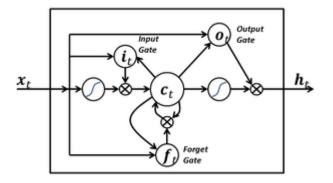
Deep Learning in Speech Recognition

LSTM (long short-term memory)

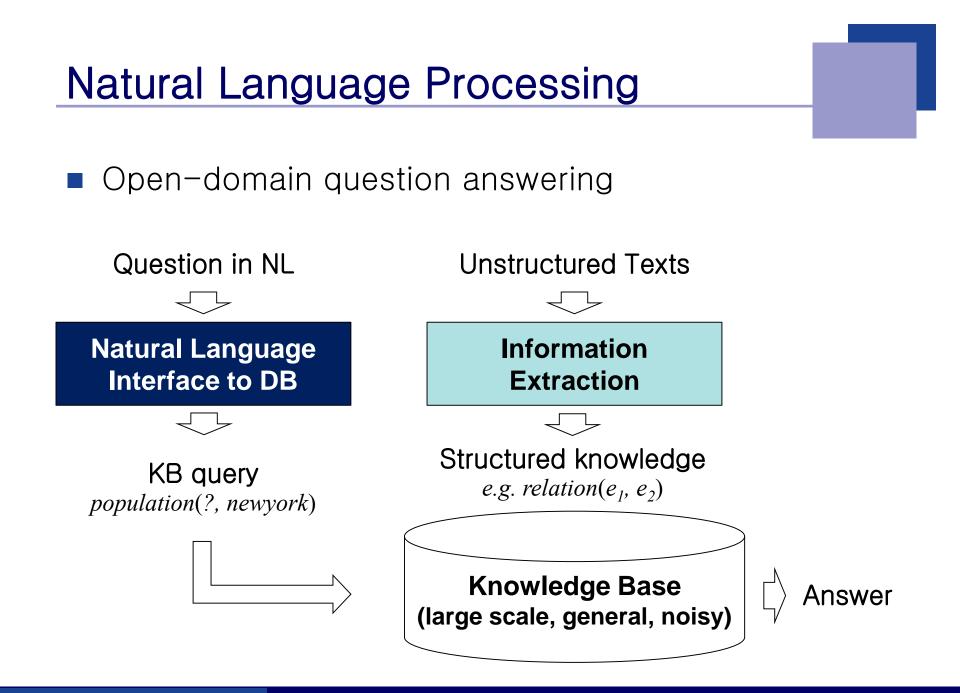
- Recurrent neural network (RNN) architecture
- Achieved 17.7% on TIMIT dataset



Recurrent neural networks



LSTM



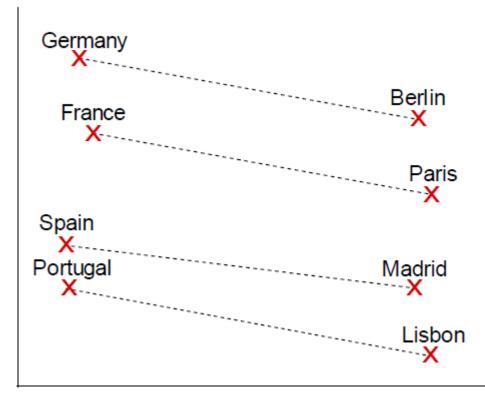
Semantic Parsing using CNN [Yih2014]

Semantic parsing

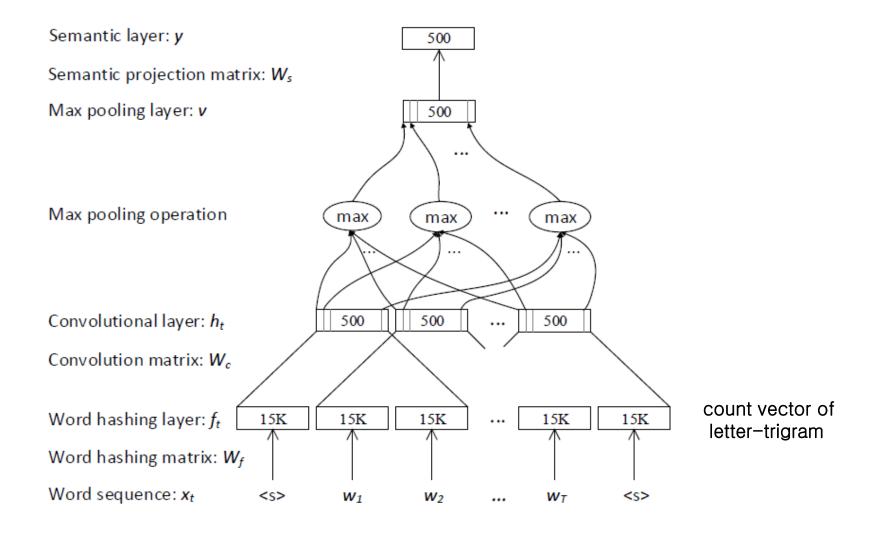
- Entity mention <-> KB entity
- Relation pattern <-> KB relation
- CNN-based semantic similarity model (CNNSM)
 - Maps variable-length word sequence to low-dimensional vector
 - Compares word sequences by cosine distance.

Word Embedding

Embedded vector space
 Ex) 'Paris – France + Berlin' provide a vector near 'Germany'



CNN-based Semantic Model [Yih2014]



Agenda

- Introduction to Deep Learning
- RBM and Auto-Encoders
- Convolutional Neural Networks
- Recurrent Neural Networks
- Reinforcement Learning
- Deep Reinforcement Learning

Q&A

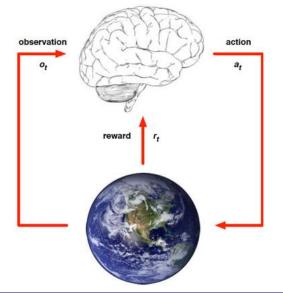
References

- Deep Reinforcement Learning [Silver16]
- Human-level control through deep reinforcement learning [Mnih15]
- Mastering the game of Go with deep neural networks and tree search [Silver16]
- Introduction to Reinforcement Learning [K.Kim13]

Reinforcement Learning

RL is a general-purpose framework for decision-making

- RL is for an agent with the capacity to act
- Each action influences the agent's future state
- Success is measured by a scalar reward signal
- Goal: select actions to maximise future reward



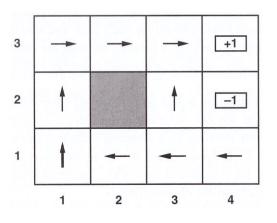
Major Components of RL Agents

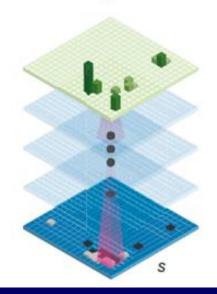
- An RL agent may include one or more of these components
 - Policy: agent's behavior function for each state
 - Value function: how good is each state and/or action
 - Model: agent's representation of environment

Policy

- A policy is the agent's behaviour
- It is a map from state to action:
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = \mathbb{P}[a|s]$

p (als)





Value Function

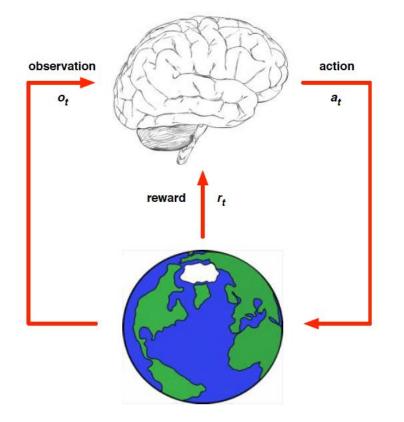
- A value function is a prediction of future reward
 - "How much reward will I get from action a in state s?"
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - \blacktriangleright with discount factor γ

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

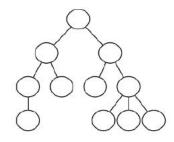
Value functions decompose into a Bellman equation

$$Q^{\pi}(s,a) = \mathbb{E}_{s',a'}\left[r + \gamma Q^{\pi}(s',a') \mid s,a\right]$$

Model



- Model is learnt from experience
- Acts as proxy for environment
- Planner interacts with model
- e.g. using lookahead search



Approaches to Reinforcement Learning

Value-based RL

- Estimate the optimal value function $Q^*(s, a)$
- This is the maximum value achievable under any policy
 Policy-based RL
 - Search directly for the optimal policy π^*
- This is the policy achieving maximum future reward Model-based RL
 - Build a model of the environment
 - Plan (e.g. by lookahead) using model

Agenda

- Introduction to Deep Learning
- RBM and Auto-Encoders
- Convolutional Neural Networks
- Recurrent Neural Networks
- Reinforcement Learning
- Deep Reinforcement Learning

Q&A

Deep Reinforcement Learning

We seek a single agent which can solve any human-level task

- RL defines the objective
- DL gives the mechanism
- RL + DL = general intelligence

Deep Reinforcement Learning

Use deep neural networks to represent

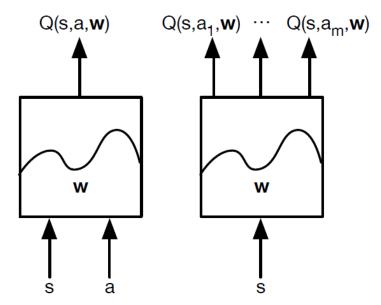
- Value function
- Policy
- Model

Optimise loss function by stochastic gradient descent

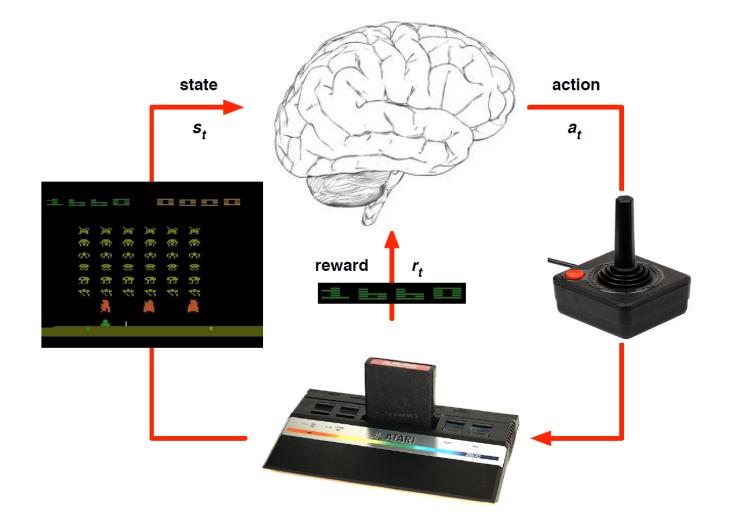
Q-Networks

Represent value function by Q-network with weights w

$$Q(s, a, \mathbf{w}) pprox Q^*(s, a)$$



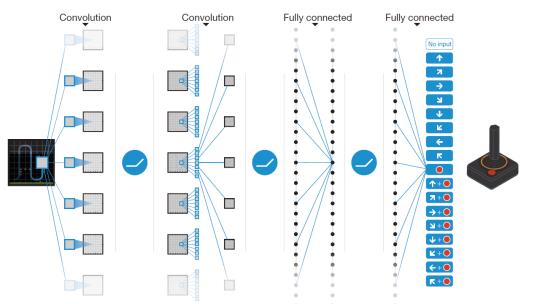
Deep Reinforcement Learning in Atari



Handong Global University

DQN in Atari

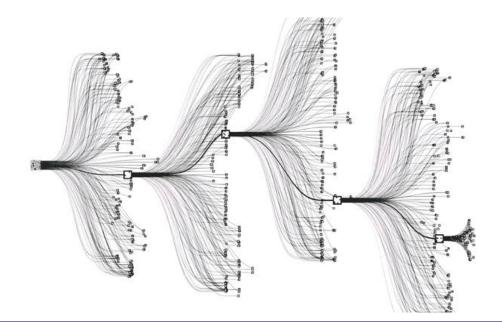
- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step



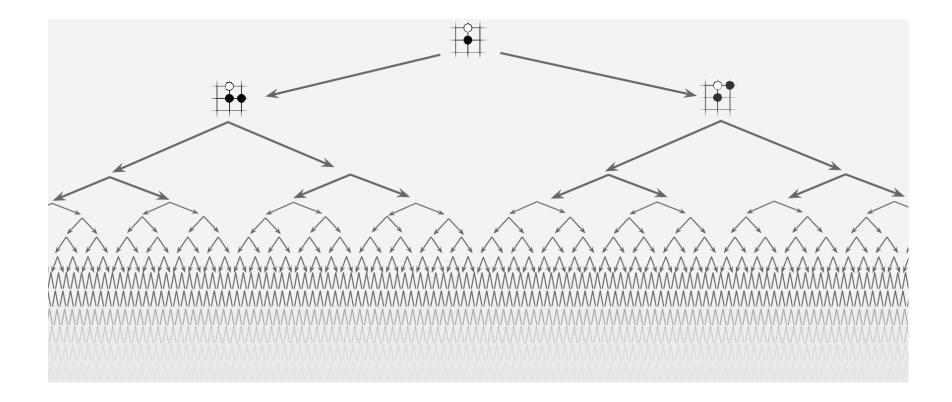
Network architecture and hyperparameters fixed across all games

AlphaGo

- Conventional tree search
 - Infeasible for huge search space
- Monte Carlo Tree Search (MCTS)
 - Random sampling
 - Policy network, value networks guide random sampling



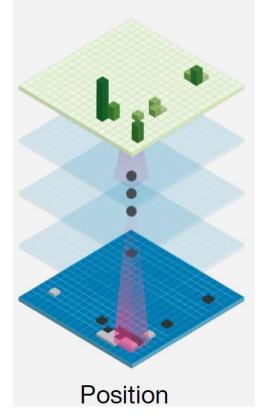
Exhaustive Search



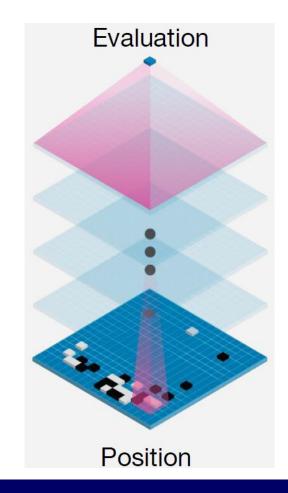
CNNs in AlphaGo

Policy network

Move probabilities



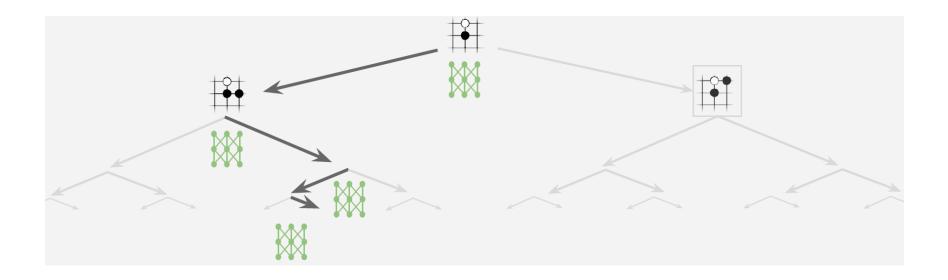
Value network



Handong Global University

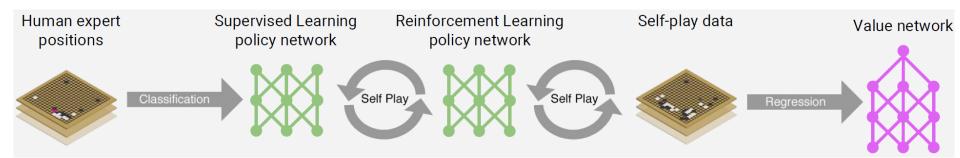
Reducing Search Space

- Policy network reduces breath
- Value network reduces depth



Neural Network Training Pipeline

- Supervised learning of policy network
- Reinforcement learning of policy network
- Reinforcement learning of value network



Supervised Learning of Policy Network

- Policy network: 12 layer convolutional neural network
- Training data: 30M positions from human expert games (KGS 5+ dan)
- Training algorithm: maximize likelihood by stochastic gradient descent

$$\Delta \sigma \propto \frac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}$$

Training time: 4 weeks on 50 GPUs using Google Cloud
 Results: 57% accuracy on held out test data (state-of-the art was 44%)

Reinforcement Learning of Policy Network

- Policy network: 12 layer convolutional neural network
- Training data: games of self-play between policy network
- Training algorithm: maximize wins z (1 or -1)by policy gradient reinforcement learning

$$\Delta \sigma \propto \frac{\partial \log p_{\sigma}(a|s)}{\partial \sigma} z$$

- Training time: 1 week on 50 GPUs using Google Cloud
- Results: 80% vs supervised learning. Raw network
 ~3 amateur dan

Reinforcement Learning of Value Network

- Value network: 12 layer convolutional neural network
- Training data: 30 million games of self-play
- Training algorithm: minimize MSE by stochastic gradient descent

$$\Delta heta \propto rac{\partial v_{ heta}(s)}{\partial heta}(z - v_{ heta}(s))$$

- Training time: 1 week on 50 GPUs using Google Cloud
- Results: First strong position evaluation function previously thought impossible