20170627 쉽게 배우는 인공지능

Deep-learning based Language Understanding and Emotion extractions

Jeongkyu Shin Lablup Inc.

한양대학교 HANYANG UNIVERSITY

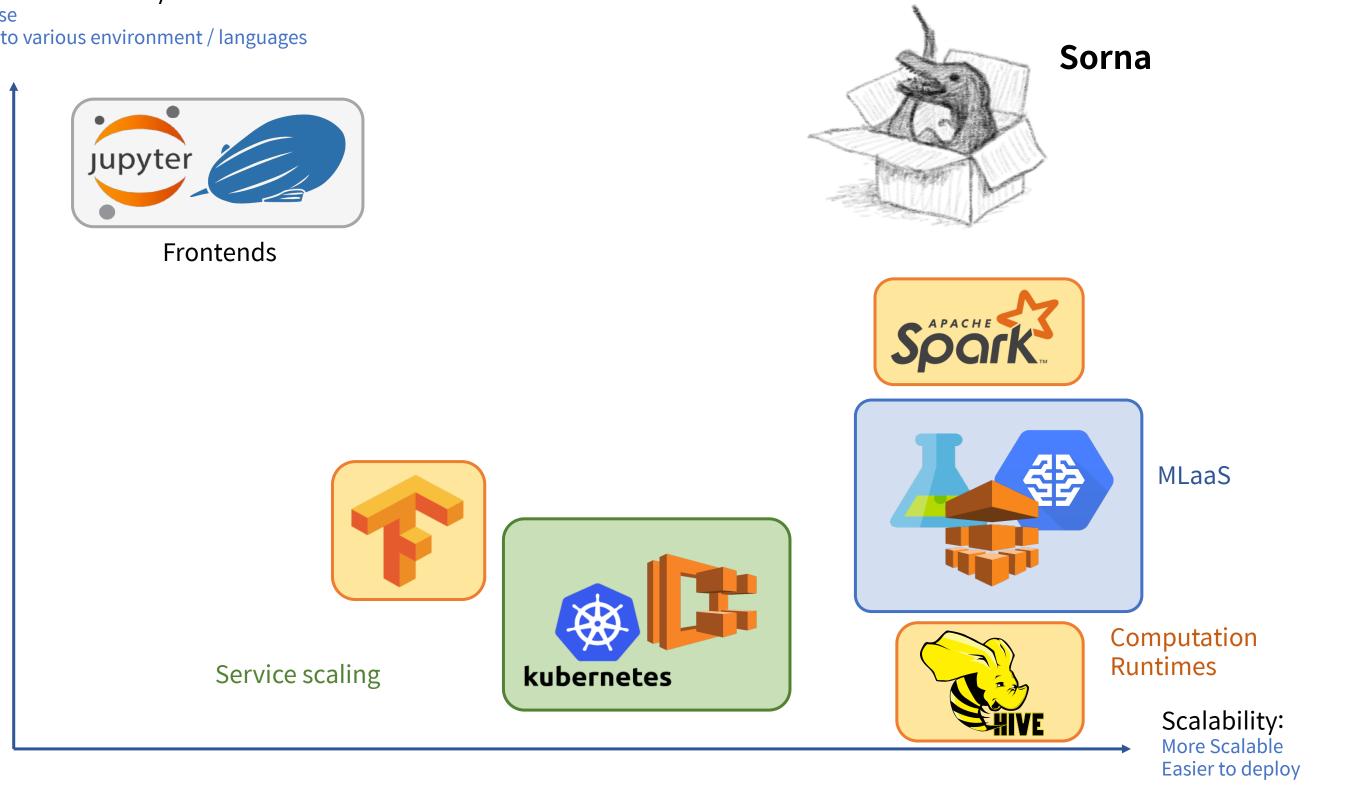
Pay-as-you-Go

PaaS for research, deep-learning model training and ultraconvenient coding education environment.

_

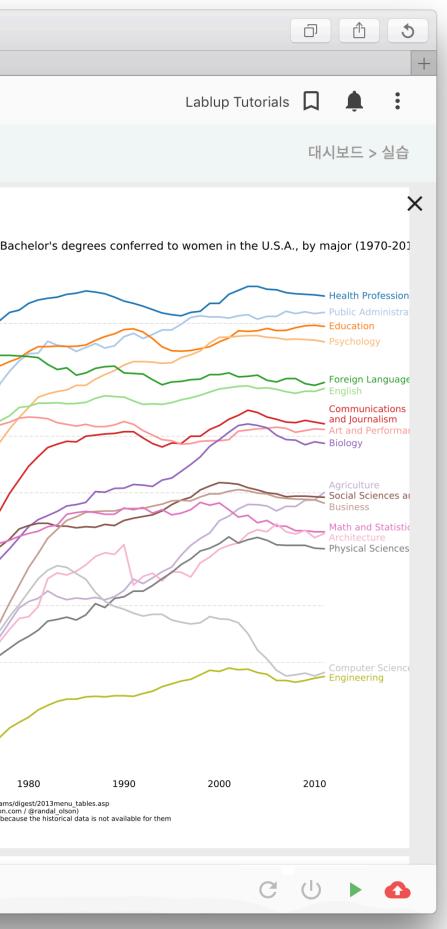
A sophisticated PaaS that Simplify, Unify and Accelerate processes which enable users to training ML models and execute code on cloud or on-premises with ease.

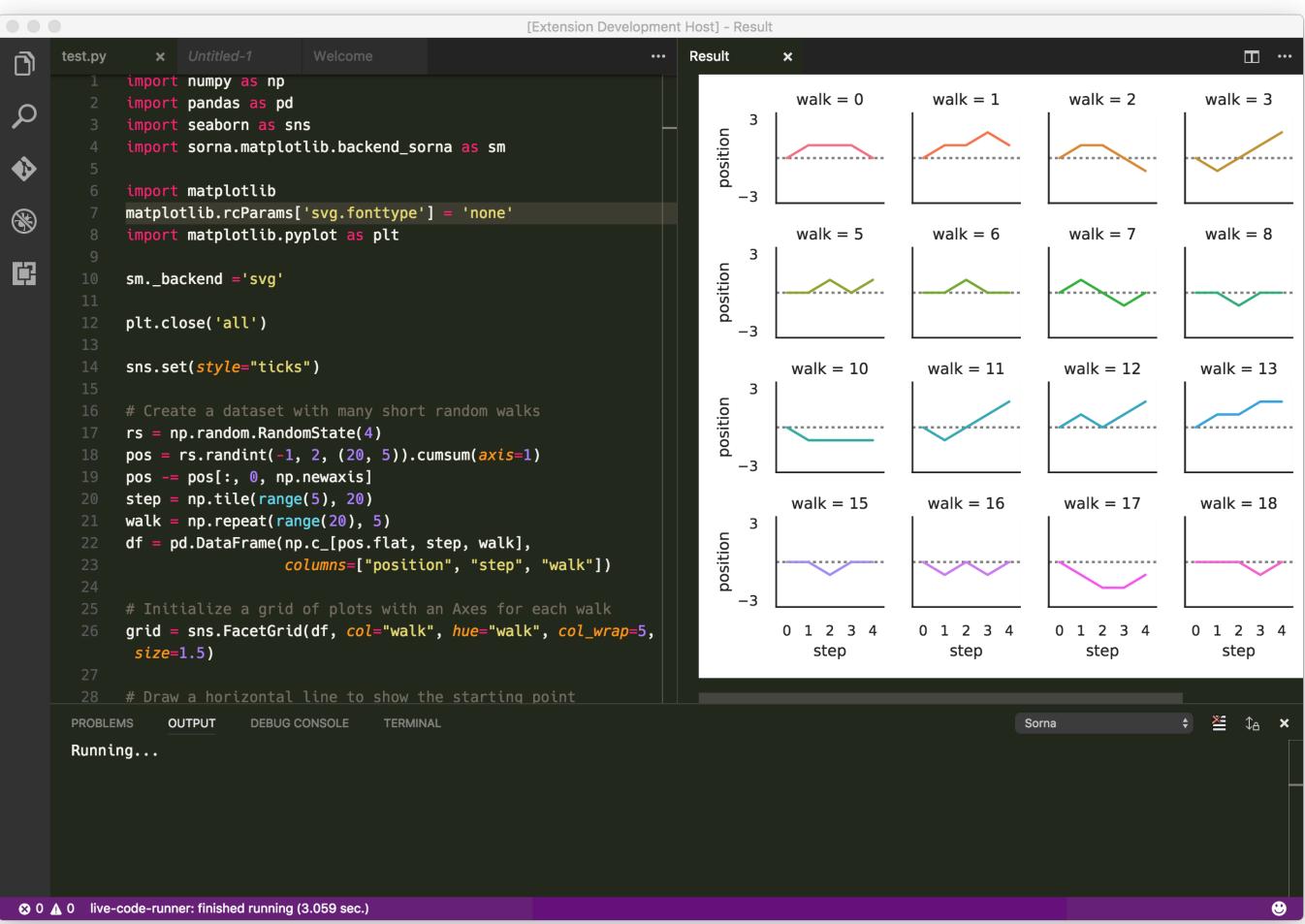
Garden


Showcases

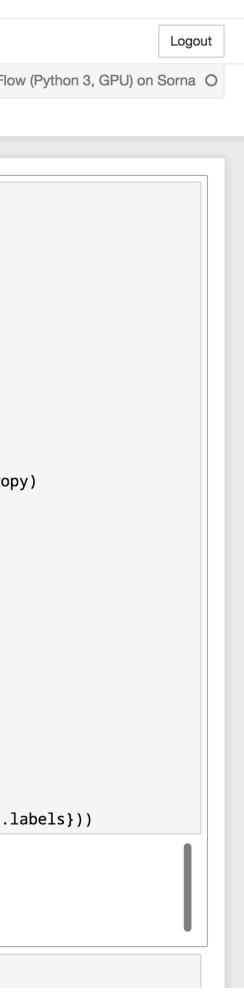
Documents, forum, showcases of Lablup.ai platform.

CodeOnWeb


Usability & extensibility:


Easier to use Extensible to various environment / languages

		C
***	CodeOnWeb - 실습	
CodeOnWeb		
메뉴 실습	Untitled \times +	
nguages / Environments	1 import matplotlib.pyplot as plt	
rthon3 –	2 import pandas as pd 3	
	4 # Read the data into a pandas DataFrame.	Percentage of B 90%
실행	5 gender_degree_data =	3070
	<pre>pd.read_csv("http://www.randalolson.com/wp- content/uploads/percent_bachalors_dograps_women_uca_csv")</pre>	
▲ 저장	<pre>content/uploads/percent-bachelors-degrees-women-usa.csv") 6</pre>	80%
	7 # These are the "Tableau 20" colors as RGB.	
MORE	8 tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),	70%
보고 · 사용조건 · 개인정보보호	9 (44, 160, 44), (152, 223, 138), (214, 39, 40),	
	(255, 152, 150),	60%
	10 (148, 103, 189), (197, 176, 213), (140, 86, 75), (106, 156, 140)	
	(196, 156, 148), 11	50%
	(199, 199, 199),	
	12 (188, 189, 34), (219, 219, 141), (23, 190, 207),	40%
	(158, 218, 229)] 13	
	14 # Scale the RGB values to the [0, 1] range, which is the format	30%
	<pre>matplotlib accepts. 15 fam i in manual(lan(tableau00));</pre>	
	15 for i in range(len(tableau20)): 16	20%
	17 tableau20[i] = (r / 255., g / 255., b / 255.)	
		10%
	<pre>19 # You typically want your plot to be ~1.33x wider than tall. This plot is a rare</pre>	
	20 # exception because of the number of lines being plotted on it.	^{0%} 1970
	21 # Common sizes: (10, 7.5) and (12, 9)	Data source: nces.ed.gov/program Author: Randy Olson (randalolson.
	22 plt.figure(figsize=(12, 14))	Note: Some majors are missing be

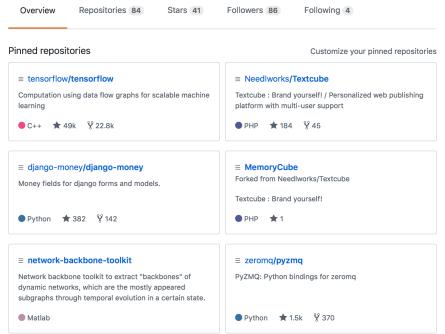

8.4.6388.20170210.tricera

Jupyter Python DL Examples Last Checkpoint: 2 hours ago (autosaved)

File Ec	dit \	View	Insert	Cell	Kernel	Help		TensorFlo
New Note	ebook	•	Tenso	rFlow (Py	thon 3, GPl	J) on Sorna	CellToolbar	
Open			Javaso	cript (Noc	leJS 6) on S	Sorna		
Make a C	opy		Julia 0	.5 on Soi	ma			
Rename	•		Lua 5.	3 on Sorr	na		nist import input_data	
Save and	Checkp	point	PHP 7	on Sorna	a			
Deverte	Obselve		Pytho	n 3			./samples/MNIST_data/"	, one_hot=True)
Revert to	Спескр	oint 🕨	Pytho	n 3 on So	rna			
Print Prev	view		R 3 or	Sorna			, 784])	
Download	d as	•				J) on Sorna)	
			100	•	(tf.matm	ul(x, W)	+ b)	
Trusted N	lotebool	K	tf n] a	a a b a l d	مىر (بول م	-+22 [No	101)	
Close and	t Halt		ст.рта	ICENOIO	er(tr.no	at32, [No	ne, [0])	
	a riait	+ +					tf.log(y))	
		trai	.n_step	= tr.t	rain.Gra	alentDesc	entOptimizer(0.01).mini	nize(cross_entro
			ession	7 - 4 - 7			()	
		1011	$z = \tau \tau \cdot g$	ltopat	variabie	s_initial	lzer()	
			= tf.S		()			
		sess	.run(in	iit)				
			arning					
		for	i in ra batch x			mnist.tra	in.next_batch(100)	
							={x: batch_xs, y_: batcl	n_ys})
		# Va	lidatic	n				
		corr	ect_pre	dictio		•	rgmax(y, 1), tf.argmax(
		accu	iracy =	tf.red	uce_mean	(tf.cast(correct_prediction, tf.	loat32))
						imately 9		
		prir	nt(sess.	run(ac	curacy,	feed_dict	={x: mnist.test.images,	<pre>y_: mnist.test.</pre>
							ain-images-idx3-ubyte.g	
							ain-labels-idx1-ubyte.g; 0k-images-idx3-ubyte.gz	
		Extr	acting				0k-labels-idx1-ubyte.gz	
		0.91	.52					
Tn		impo	rt tong	orflow	ac tf			

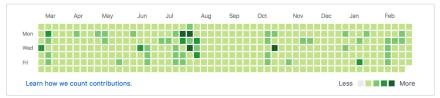
- Humble business man
 - Lablup Inc.
- Open-source devotee
 - Google Developer Expert (Machine Learning)
 - Textcube open-source project maintainer
 - 10th anniversary!
 - Play with some (open||hidden) projects / companies
- Physicist / Neuroscientist
 - Adj. professor (*Dept. of Computer Science, Hanyang Univ.*)
 - Ph.D in Statistical Physics (complex system / neuroscience)
 - Major in **Physics / Computer Science**

신정규 / Jeongkyu Shin / @inureyes


Jeongkyu Shin inureyes

Add a bio

A @lablup @Needlworks

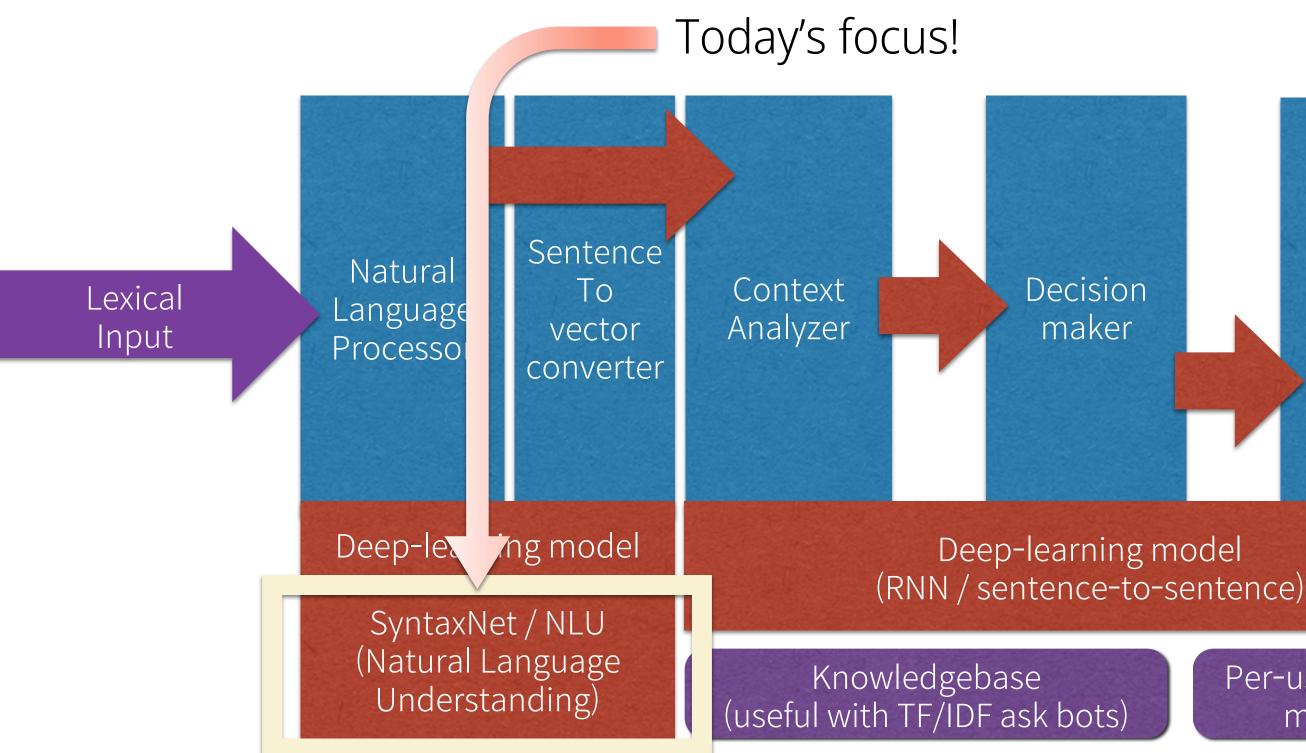

- Republic of Korea
- inureyes@gmail.com
- Po https://forest.nubimaru.com

Organizations

3.246 contributions in the last year

Contribution settings

Today's focus


- NLP and Sentiment: Big problems when making chatbots
- Natural Language Understanding
 - SyntaxNet and DRAGAN
- Emotion reading
 - SentiWordNet and SentiSpace^[1]

[1] Our own definition for sentimental state space

Understanding Language:

It's even hard for human beings.

Chat-bots with Machine Learning

Response Generator

Per-user context memory

Understanding Languages

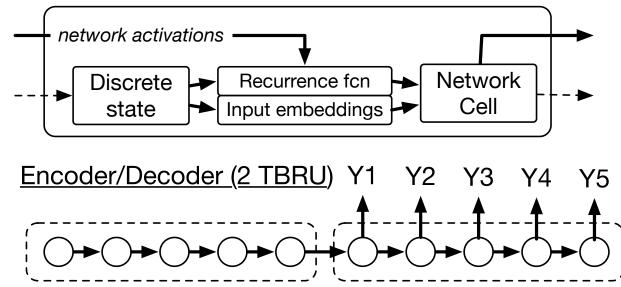
- The structure of language
 - "Noun" and "Verb"
- "Context"
 - POS (Part-of-speech)
 - Roles for the words
 - Added as tags
 - Only one meaning in the current sentence context
 - Generalized POS tags
 - Some POS tags are very common (noun, verb, …)
 - Others? Quite complicated!

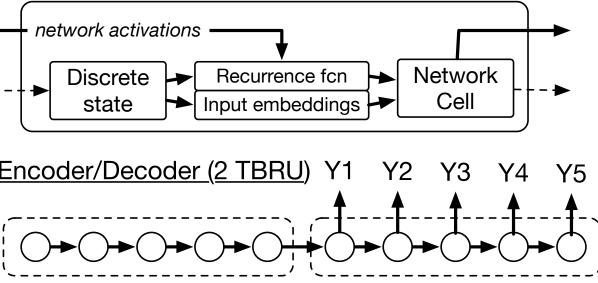
SyntaxNet (2016)

- Transition-based framework for natural language processing
 - Feature extraction
 - Representing annotated data
 - Evaluation
- End-to-end implementation using deep learning
 - No language-awareness/dependencies: data-driven
- Interesting points
 - Found general graph structure between different human languages (2016-7)
 - <u>http://universaldependencies.org</u>

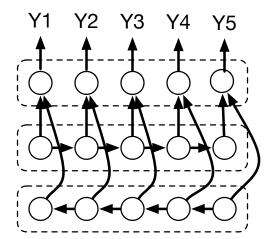
*github.com/tensorflow/tensorflow

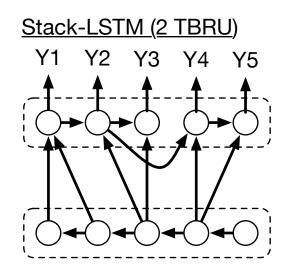
DRAGNN (2017)


- Dynamic Recurrent Acyclic Graphical Neural Networks (Mar. 2017)
 - Framework for building multi-task, fully dynamically constructed computation graphs
 - Not GAN (Generative Adversarial Network)!
- Supports
 - Training and evaluating models
 - Pre-trained analyze models (McParsey) for 40 language
 - Except Korean. (of course;)

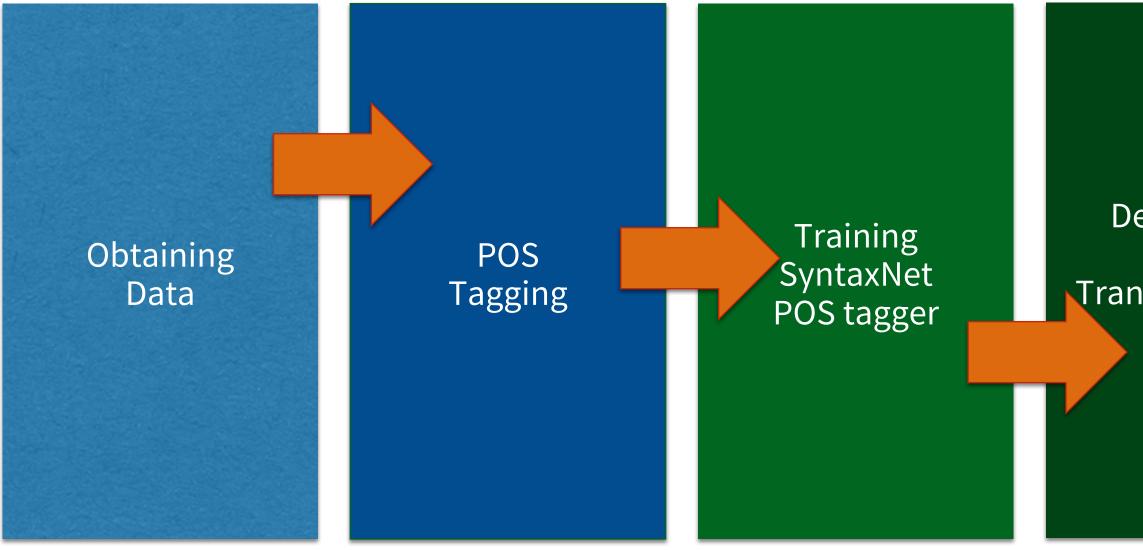


TBRU


- Transition-based recurrent unit
 - Discrete state dynamics: allow network connections to be built dynamically as a function of intermediate activations
- Potential of TBRU: extension and combination
 - Sequence-to-sequence
 - Attention mechanisms
 - Recursive tree-structured models

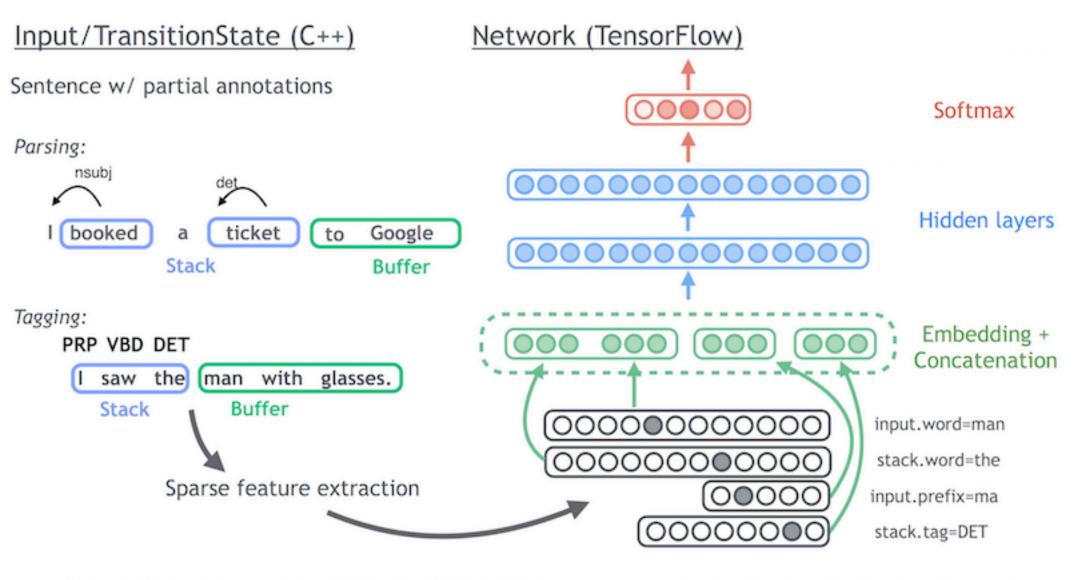


Transition Based Recurrent Unit (TBRU)


Bi-LSTM Tagging (3 TBRU)

*Kong et al., (2017) 🤇

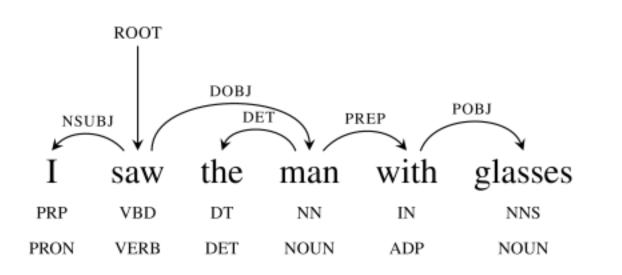
Generating NLP with SyntaxNet



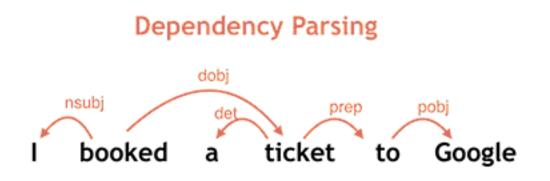
Dependency parsing Transition-based Parsing

Training Parser

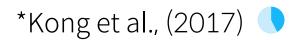
SyntaxNet implementation

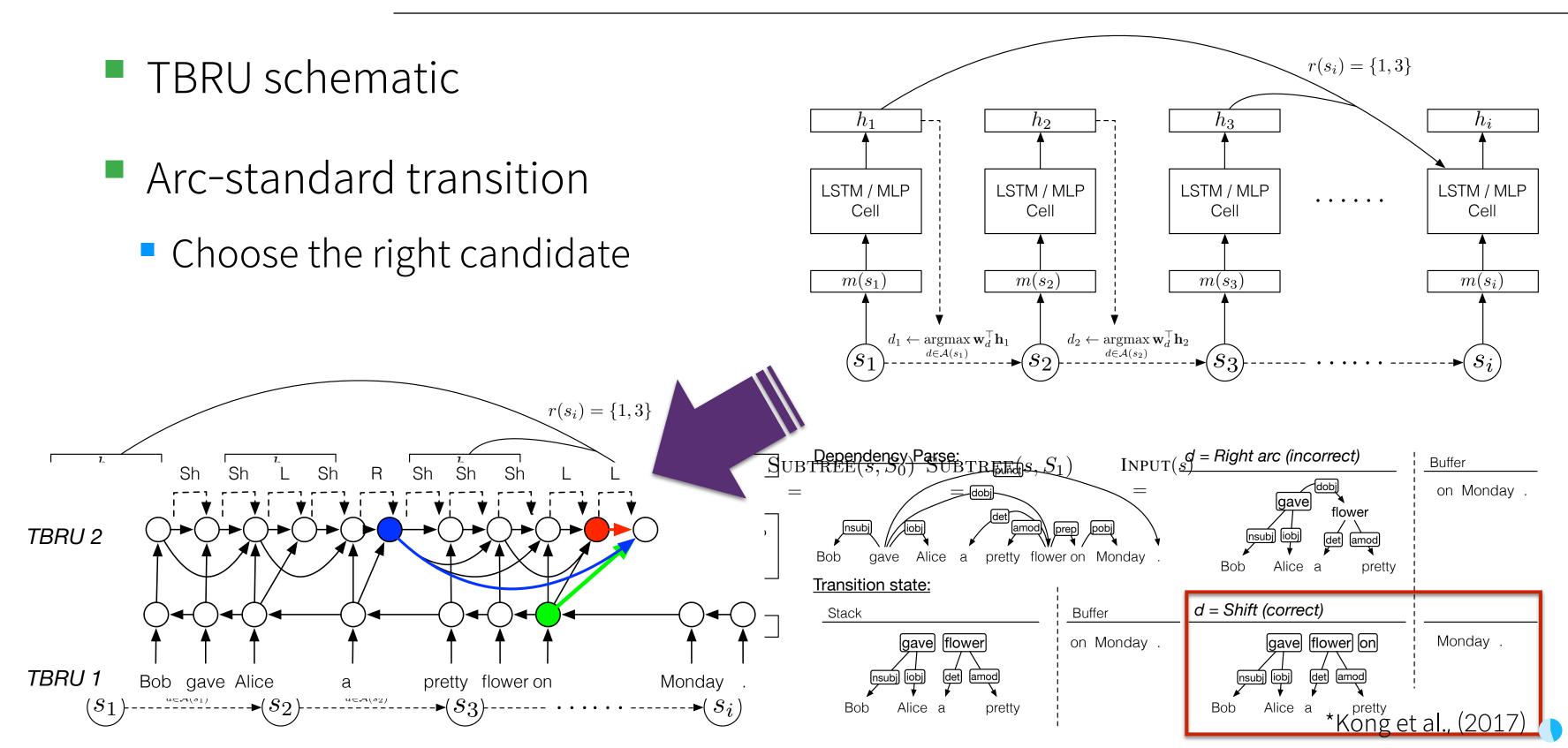

- Not a BOW (Bag-ofwords) model
- Workflow
 - POS Tagging model
 - Preprocessing with tagger model
 - Dependency parsing

Feed-Forward SyntaxNet Architecture (Overview)


*github.com/tensorflow/tensorflow

SyntaxNet implementation


- SHIFT, LEFT ARC, RIGHT ARC
- "deviation"
 - Configuration+Action



Transition-based dependency parser

Local pre-training / global training

Dive into TBRU

Model differences

- DRAGNN^[1]: End-to-end, deep recurrent models
 - Use to extend SyntaxNet^[2] to be end-to-end deep learning model
 - **TBRU**: Transition-Based Recurrent Unit
 - Uses both encoder and decoder
 - TBRU-based multi-task learning: DRAGNN
- SyntaxNet: Transition-based NLP
 - Can train SyntaxNet using DRAGNN framework

learning mode

[1] Kong et al., (2017)[2] Andor et al., (2016)

Parsey McParseface

- Parsey McParseface (2017)
 - State-of-art deep learning-based text parser
- Performance comparison

Model	News	Web	Questions
<u>Ling et al.</u> (2015)	97.44	94.03	96.18
<u>Andor et al.</u> <u>(2016)</u> *	97.77	94.80	96.86
Parsey McParseface	97.52	94.24	96.45

POS (part-of-speech) tagging

Martins et al. (2013)Zhang and **McDonald** (2014)Weiss et al. (2015)

Model

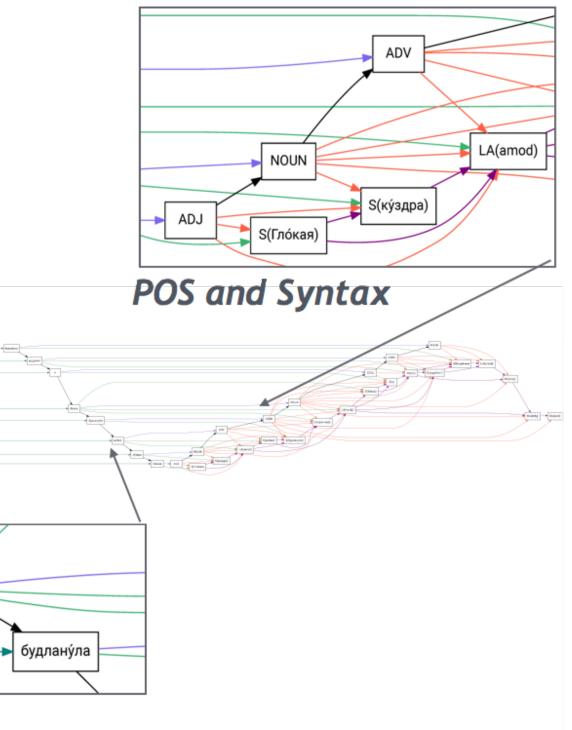
Andor et al. (2016)*

Parsey McParseface

News	Web	Questions
93.10	88.23	94.21
93.32	88.65	93.37
93.91	89.29	94.17
94.44	90.17	95.40
94.15	89.08	94.77

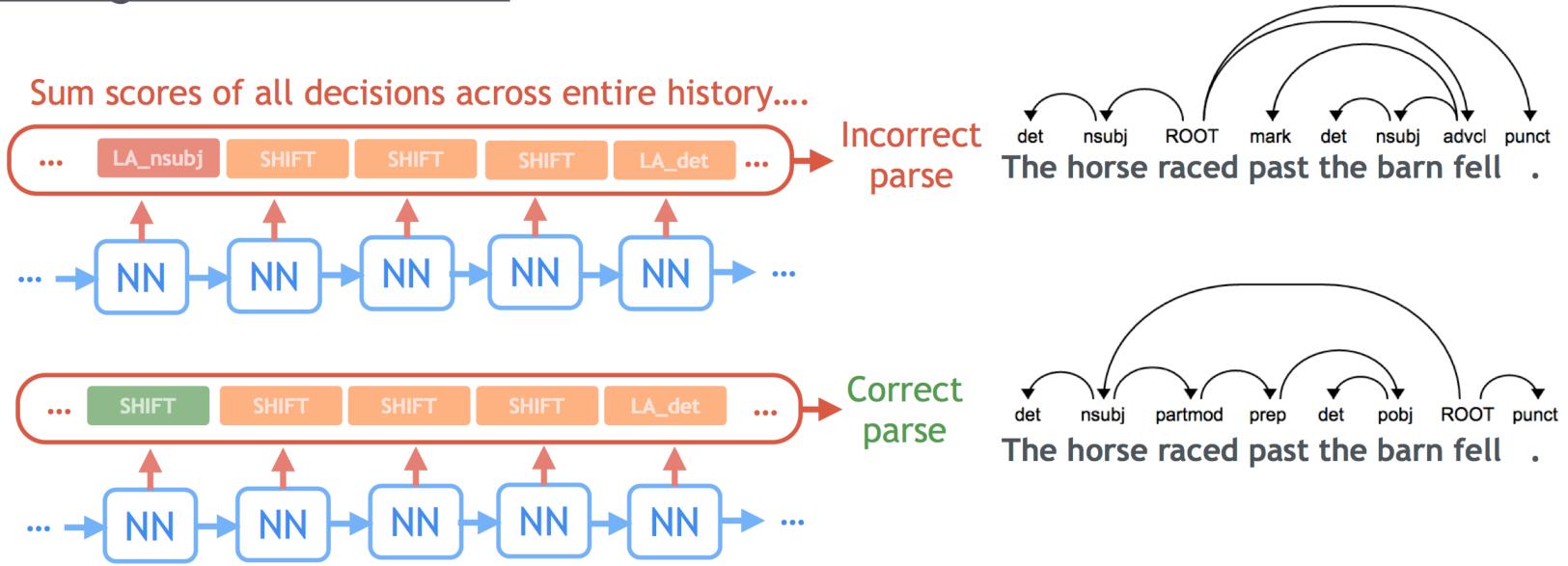
For different language domains

*github.com/tensorflow/tensorflow 🌓


McParseface model / DRAGNN framework

ParseySaurus analysis:

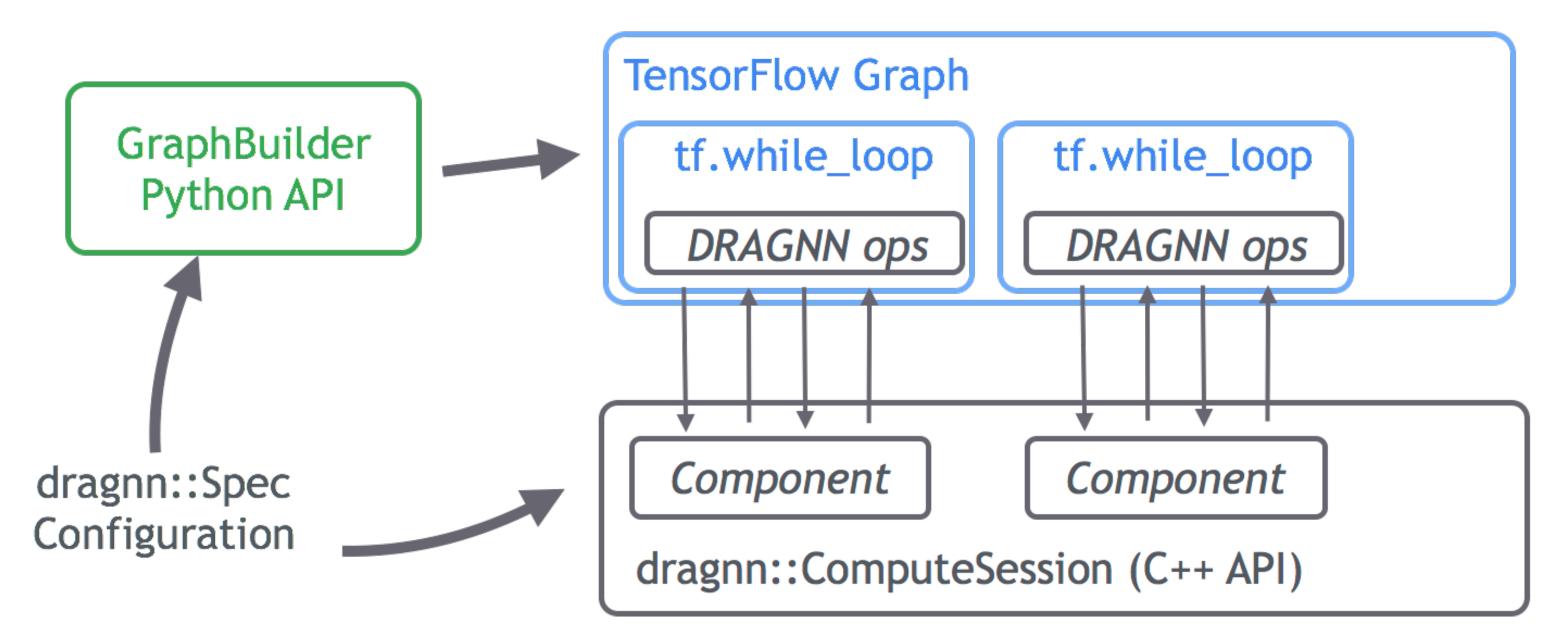
Dynamically constructed network:


Character-based word representations

*github.com/tensorflow/tensorflow 🥊

SyntaxNet Architecture

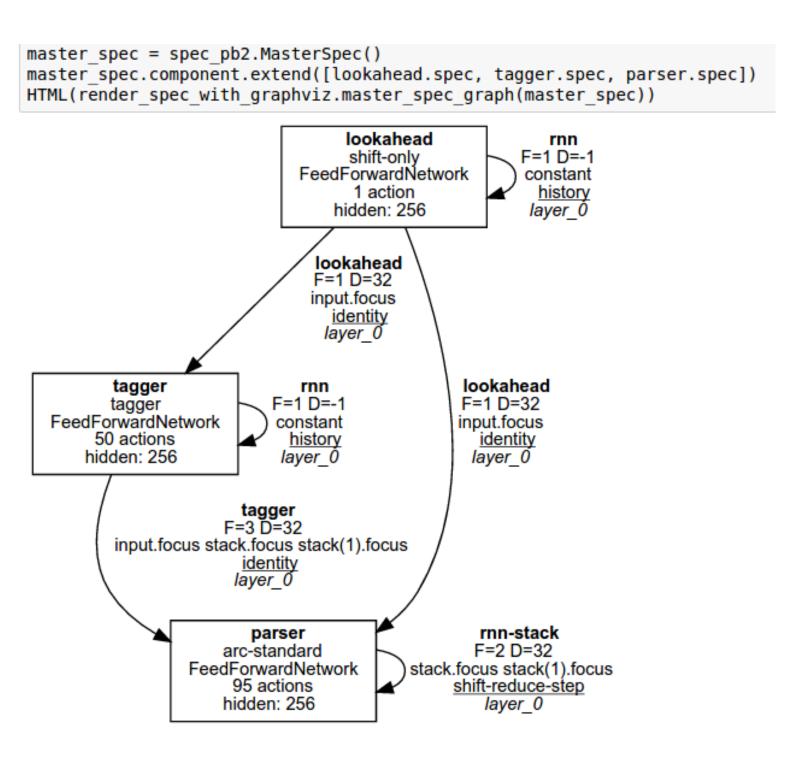
Training with Beam Search:


Update: maximize P(correct parse) relative to the set of alternatives

Globally Normalized SyntaxNet Architecture (Overview)

*github.com/tensorflow/tensorflow 🤳

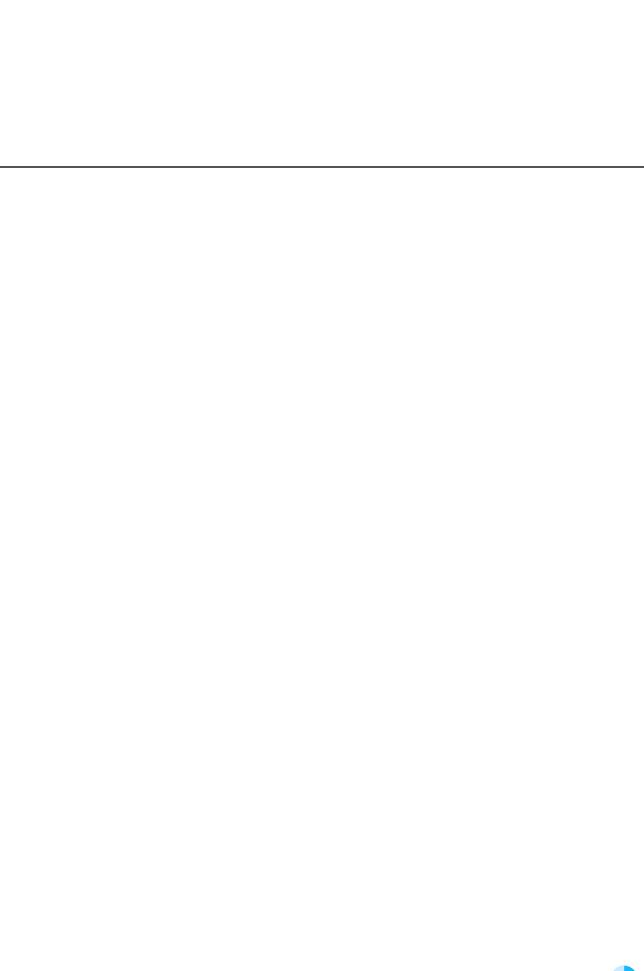
DRAGNN implementation


DRAGNN implementation on TensorFlow

*github.com/tensorflow/tensorflow

Compute Graph

- Compute graph for SyntaxNet
 - Example case in TensorFlow repo.
- Three parts of NLP
 - Lookahead
 - Tagger
 - Parser
- Characteristics
 - Every model uses memory effect



*github.com/tensorflow/tensorflow 🤇

Why no Korean?

Korean language-specific characteristics

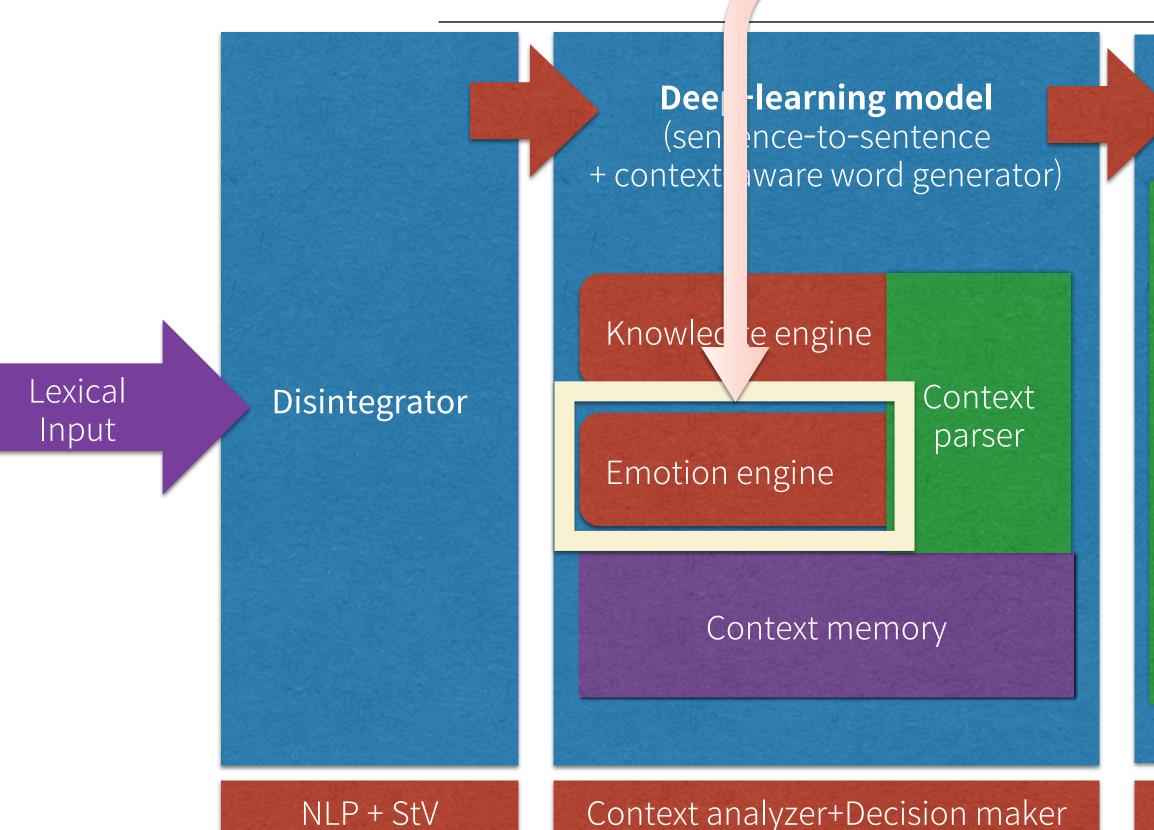
- Solution?
 - Yes, I think. (testing now.)

Now, let's move to the emotion part.

Looks easier but harder, in fact.

Problems for next-gen chatbots

- Hooray! Deep-learning based chat bots works well with Q&A scenario!
- General problems
 - Inhuman: restricted for model training sets
 - Cannot "start" conversation
 - Cannot handle continuous conversational context and its changes


"Uncanny Valley"

- Inhuman speech / conversation.
- Why? How?

Emotion engine

Today's focus!

Sentence generator

Grammar generator

Tone generator

Lexical Output

Response generator

Conversational context locator

- Using Skip-gram and bidirectional 1-gram distribution in recent text
- I ate miso soup this morning. => Disintegrate first

Eat

Bidirectional 1-gram set (reversible trigram): {(I,miso soup),Eat}, {(eat,today),miso soup}, {(miso soup,morning),today}

Miso soup Today Morning

Simplifying: {(<I>,<FOOD>),<EAT>}, {(<EAT>,Today),<FOOD>}, {(<FOOD>,morning),Today}

- Distribution: more simplification is needed
 - {(<I>,<FOOD>), <EAT>}, {(<TIME:DATE>,<EAT>), <FOOD>}, {(<FOOD>,<TIME:DAY>),< TIME:DATE>}
 - Now we can calculate multinomial distribution

*I'll use trigram as abbreviation of reversible trigram

<TIME:DAY>

Conversational context locator

- Using Skip-gram and bidirectional 1-gram distribution in recent text
- 나는 오늘 아침에 된장국을 먹었습니다. => Disintegrate first

Bidirectional 1-gram set: {(나,아침),오늘}, {(오늘,된장국),아침}, {(아침,먹다),된장국}

Simplifying: {(<I>,아침),오늘}, {(오늘,<FOOD>),아침}, {(아침,<EAT>),<FOOD>}

<TIME:DATE>

<TIME:DAY>

- **Distribution**: more simplification is needed
 - {(<I>,<TIME:DAY>), <TIME:DATE>}, {(<TIME:DATE>,<FOOD>), <TIME:DAY>}, {(<TIME:DAY>,<</p> ËAT>),<FOOD>}
 - Now we can calculate multinomial distribution

Conversational context locator

- Training context space
 - Context-marked sentences (>2000)
 - Context: LIFE / CHITCHAT / SCIENCE / TASK
 - Prepare Generated trigram sets with context bit
 - Train RNN with 1-gram-2-vec
- Matching context space
 - Input trigram sequence to context space
 - Take the dominator axis

- Using Skip-gram and trigram distribution in recent text
 - $\{(\langle I \rangle, \langle TIME: DAY \rangle), \langle TIME: DATE \rangle\}$
 - {(<TIME:DATE>,<FOOD>), <TIME:DAY>}
 - $\{(<TIME:DAY>, <EAT>), <FOOD>\}$
- With distribution
 - Calculate maximum likelihood significance and get significant ngrams
 - Uses last 5 sentences

For better performance

- Characteristics of Korean Language
 - Distance between words: important
 - Sequence between words: not important
 - Different from English
- How to read more contextual information from longer text? (e.g. Documents)

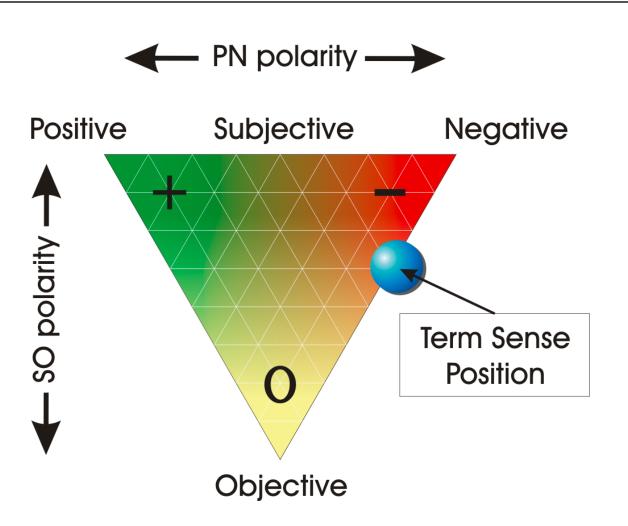
- senteńce
 - Short?
 - Long?

Change from trigram to in-range tri pairs

<TIME:DATE>

<TIME:DAY>

I ate miso soup this morning:

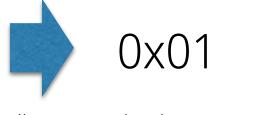
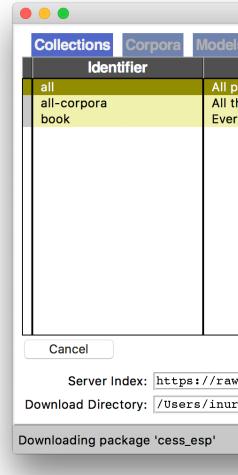

In range 1: {(<I>,<FOOD>), <EAT>} In range 2: {(<TIME:DATE>), <EAT>}

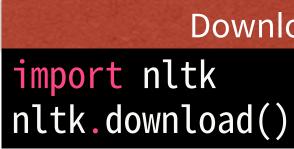
In range 3: {(<TIME:DAY>), <EAT>}

Heavily depends on the length of original

Emotion engine

- Input: *text sequence*
- Output: Emotion flag (6-type / 3bit)
- Training set
 - Sentences with 6-type categorized emotion
 - Positivity (2), negativity (2), objectivity (2)
 - Uses senti-word-net to extract emotion
 - 6-axis emotion space by using Word2Vec model
 - Current emotion indicator: the most weighted emotion axis using Word2Vec model [1, 0, 0, 0, 0, 0] index: 1 2 3 4 5 6 Position in senti-space: [0.95, 0.05, 0.11, 0.89, 0.92, 0.08]


Illustration *(c) http://ontotext.fbk.eu/ 🗧

Making emotional context locator

- Similar to conversational context locator
 - Just use 1-gram from input
 - Add the corresponding word vector on emotion space
- How to?
 - Use NLTK python library
 - NLTK has corpora / data for SentiWordNet
 - Also gives download option!

NLTK Downloader		
All Packages		
Name	Size	Status
kages	n/a	partial
corpora	n/a	partial
hing used in the NLTK Book	n/a	partial
		Refresh
githubusercontent.com/nltk/nltk_data/	ah-nages/index yml	
	gii payes/ maex. All	
/es/nltk_data		

Downloading NLTK dataset

Making emotional context locator

Get emotional flag from sentence

```
Sample test routine for Sentimental state
from nltk.corpus import sentiwordnet as swn
def get_senti_vector(sentence, pos=None):
  result = dict()
  for s in sentence.split(' '):
    if s not in result.keys():
        senti = list(swn.senti_synsets(s.lower(), pos))
        if len(senti) > 0:
          mostS = senti[0]
          result[s] = [mostS.pos_score(), 1.0-
mostS.pos_score(), mostS.neg_score(), 1.0-
mostS.neg_score(), mostS.obj_score(), 1.0 -
mostS.obj_score()]
```

sentence = "Hello I am happy I was super surprised"
result = get_senti_vector(sentence)

Adj. only {'I': [0.0, 1.

```
{'I': [0.0, 1.0, 0.25, 0.75, 0.75, 0.25],
'happy': [0.875, 0.125, 0.0, 1.0, 0.125, 0.875],
'super': [0.625, 0.375, 0.0, 1.0, 0.375, 0.625],
'surprised': [0.125, 0.875, 0.25, 0.75, 0.625, 0.375]}
```

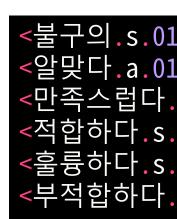
```
All morpheme
```

```
{'Hello': [0.0, 1.0, 0.0, 1.0, 1.0, 0.0],
'I': [0.0, 1.0, 0.0, 1.0, 1.0, 0.0],
'am': [0.0, 1.0, 0.0, 1.0, 1.0, 0.0],
'happy': [0.875, 0.125, 0.0, 1.0, 0.125, 0.875],
'was': [0.0, 1.0, 0.0, 1.0, 1.0, 0.0],
'super': [0.0, 1.0, 0.0, 1.0, 1.0, 0.0], 'surprised': [0.125,
0.875, 0.0, 1.0, 0.875, 0.125]}
```

return result

Creating Korean SentiWordNet

- Procedure to generate Korean SentiWordNet corpus
- 1. Get every synsets from sentiwordnet data


for i in swn.all_senti_synsets(): data.append(i)

4. Choose the score from 'representative word'

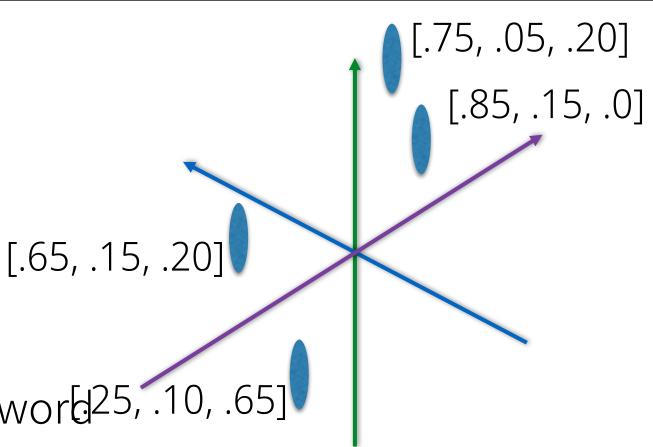
<불구의.s.01: PosScore=0.0 NegScore=0.0> <알맞다.a.01: PosScore=0.5 NegScore=0.0> <적합하다.a.01: PosScore=0.5 NegScore=0.0> <어울리다.a.01: PosScore=0.5 NegScore=0.0> <만족스럽다.s.04: PosScore=0.25 NegScore=0.0> <적합하다.s.01: PosScore=0.125 NegScore=0.0> <훌륭하다.s.03: PosScore=0.875 NegScore=0.0> <부적합하다.a.01: PosScore=0.25 NegScore=0.0>

3. Treat synonym

<maimed.s.01: PosScore=0.0 NegScore=0.0> <fit.a.01: PosScore=0.5 NegScore=0.0> <acceptable.s.04: PosScore=0.25 NegScore=0.0> <suitable.s.01: PosScore=0.125 NegScore=0.0> <worthy.s.03: PosScore=0.875 NegScore=0.0> <unfit.a.01: PosScore=0.25 NegScore=0.0>

2. Translate words into Korean

<불구의.s.01: PosScore=0.0 NegScore=0.0> <알맞다.a.01: PosScore=0.5 NegScore=0.0> <만족스럽다.s.04: PosScore=0.25 NegScore=0.0>


<적합하다.s.01: PosScore=0.125 NegScore=0.0>

<훌륭하다.s.03: PosScore=0.875 NegScore=0.0>

<부적합하다.a.01: PosScore=0.25 NegScore=0.0>

Reading emotion with SentimentSpace

- Creating emotion space
 - I. Generate word space using word2vec model
 - 2. Substitute word to SentiWordNet set
 - 3. Now we get SentimentSpace!
 - 4. Get the emotion state by giving disintegrated word 25, .10, .65] set into SentimentSpace
- Focuses on reading emotion
 - Final location on WordVec space = Average sentivector of nearest neighbors

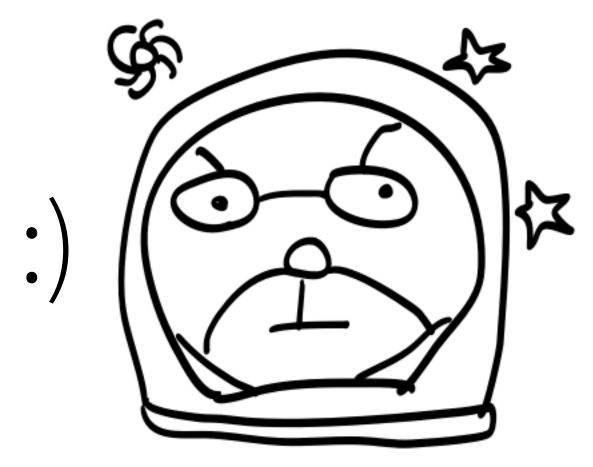
WordVec Space

*SentimentSpace: our definition / approach to simulate emotion.

Tips for SentimentSpace

- When picking the best match from candidates
 - e.g. fit → <fit.a.01: PosScore=0.5 NegScore=0.0> <acceptable.s.04: PosScore=0.25 NegScore=0.0> <suitable.s.01: PosScore=0.125 NegScore=0.0> <worthy.s.03:</pre> PosScore=0.875 NegScore=0.0>
 - 1. Just pick the first candidate from senti sets
 - 2. Calc the average Pos/Neg scores-[0.25, 0]
- When generating Korean SentiWordNet corpus
 - 1. Do not believe the result. You will need tremendous amount of pre / postprocessing
 - SentimentSpace is very rough. Keep in mind to model the emotion engine

Summary


- Today
 - Dive into SyntaxNet and DRAGNN
 - Emotion reading procedure using SentiWordNet and deep learning

- My contributions / insight to you
 - Dodging Korean-specific problems when using SyntaxNet
 - My own emotion reading / simulation algorithm

Thank you for listening :)

@inureyes / fb/jeongkyu.shin

lablup.com

