
Jeongkyu Shin
Lablup Inc.

20170627 쉽게배우는인공지능

Deep-learning based
Language Understanding and
Emotion extractions

Usability & extensibility:
Easier to use
Extensible to various environment / languages

Scalability:
More Scalable
Easier to deploy

MLaaS

Service scaling
Computation
Runtimes

Frontends

Sorna

I’m
▪Humble business man

▪ Lablup Inc.

▪Open-source devotee
▪ Google Developer Expert (Machine Learning)

▪ Textcube open-source project maintainer
▪ 10th anniversary!

▪ Play with some (open||hidden) projects / companies

▪Physicist / Neuroscientist
▪ Adj. professor (Dept. of Computer Science, Hanyang Univ.)

▪ Ph.D in Statistical Physics (complex system / neuroscience)

▪ Major in Physics / Computer Science

신정규 / Jeongkyu Shin / @inureyes

Today’s focus
▪NLP and Sentiment: Big problems when making chatbots

▪Natural Language Understanding
▪SyntaxNet and DRAGAN

▪Emotion reading
▪SentiWordNet and SentiSpace[1]

[1] Our own definition for sentimental state space

It’s even hard for human beings.

Understanding Language:

Lexical
Output

Chat-bots with Machine Learning

Context
Analyzer

Natural
Language
Processor

Response
Generator

Decision
maker

Sentence
To

vector
converter

Deep-learning model
(RNN / sentence-to-sentence)

Knowledgebase
(useful with TF/IDF ask bots)

Per-user context
memory

Lexical
Input

Deep-learning model

SyntaxNet / NLU
(Natural Language

Understanding)

Today’s focus!

Understanding Languages
▪The structure of language

▪“Noun” and “Verb”

▪“Context”
▪POS (Part-of-speech)

▪ Roles for the words
▪ Added as tags
▪ Only one meaning in the current sentence context

▪Generalized POS tags
▪ Some POS tags are very common (noun, verb, …)
▪ Others? Quite complicated!

SyntaxNet (2016)
▪Transition-based framework for natural language processing

▪Feature extraction
▪Representing annotated data
▪Evaluation

▪End-to-end implementation using deep learning
▪No language-awareness/dependencies: data-driven

▪Interesting points
▪Found general graph structure between different human languages (2016-7)
▪http://universaldependencies.org

*github.com/tensorflow/tensorflow

DRAGNN (2017)
▪Dynamic Recurrent Acyclic Graphical Neural Networks (Mar. 2017)

▪Framework for building multi-task, fully dynamically constructed
computation graphs

▪Not GAN (Generative Adversarial Network)!

▪Supports
▪Training and evaluating models

▪Pre-trained analyze models (McParsey) for 40 language
▪ Except Korean. (of course;)

*Kong et al., (2017)

TBRU
▪Transition-based recurrent unit

▪Discrete state dynamics: allow network connections to be built
dynamically as a function of intermediate activations

▪Potential of TBRU: extension and combination
▪Sequence-to- sequence

▪Attention mechanisms

▪Recursive tree-structured models
Encoder/Decoder (2 TBRU)

Bi-LSTM Tagging (3 TBRU)

Y1 Y2 Y3 Y4 Y5

Y1 Y2 Y3 Y4 Y5

Stack-LSTM (2 TBRU)
Y1 Y2 Y3 Y4 Y5

Transition Based Recurrent Unit (TBRU)

Network
Cell

Discrete
state

Recurrence fcn
Input embeddings

network activations

Figure 1: High level schematic of a Transition-Based Recurrent Unit (TBRU), and common network
architectures that can be implemented with multiple TBRUs. The discrete state is used to compute
recurrences and fixed input embeddings, which are then fed through a network cell. The network predicts
an action which is used to update the discrete state (dashed output) and provides activations that can be
consumed through recurrences (solid output). Note that we present a slightly simplified version of Stack-
LSTM (Dyer et al., 2015) for clarity.

NLP problems; Dyer et al. (2015); Lample et al.
(2016); Kiperwasser and Goldberg (2016); Zhang
et al. (2016); Andor et al. (2016), among others.
We generalize these approaches with a new ba-
sic module, the Transition-Based Recurrent Unit
(TBRU), which produces a vector representation
for every transition state in the output lineariza-
tion (Figure 1). These representations also serve
as the encoding of the explicit structure defined by
the states. For example, a TBRU that attaches two
sub-trees while building a syntactic parse tree will
also produce the hidden layer activations to serve
as an encoding for the newly constructed phrase.
Multiple TBRUs can be connected and learned
jointly to add explicit structure to multi-task learn-
ing setups and share representations between tasks
with different input or output spaces (Figure 2).

This inference procedure will construct an
acyclic compute graph representing the network
architecture, where recurrent connections are dy-
namically added as the network unfolds. We there-
fore call our approach Dynamic Recurrent Acyclic
Graphical Neural Networks, or DRAGNN.

DRAGNN has several distinct modeling advan-
tages over traditional fixed neural architectures.
Unlike generic seq2seq, DRAGNN supports vari-
able sized input representations that may contain
explicit structure. Unlike purely sequential RNNs,
the dynamic connections in a DRAGNN can span
arbitrary distances in the input space. Crucially,
inference remains linear in the size of the input, in
contrast to quadratic-time attention mechanisms.
Dynamic connections thus establish a compromise
between pure seq2seq and pure attention architec-

tures by providing a finite set of long-range in-
puts that ‘attend’ to relevant portions of the input
space. Unlike recursive neural networks (Socher
et al., 2010, 2011) DRAGNN can both predict in-
termediate structures (such as parse trees) and uti-
lize those structures in a single deep model, back-
propagating downstream task errors through the
intermediate structures. Compared to models such
as Stack-LSTM (Dyer et al., 2015) and SPINN
(Bowman et al., 2016), TBRUs are a more general
formulation that allows incorporating dynamically
structured multi-task learning (Zhang and Weiss,
2016) and more varied network architectures.

In sum, DRAGNN is not a particular neural ar-
chitecture, but rather a formulation for describing
neural architectures compactly. The key to this
compact description is a new recurrent unit—the
TBRU—which allows connections between nodes
in an unrolled compute graph to be specified dy-
namically in a generic fashion. We utilize tran-
sition systems to provide succinct, discrete repre-
sentations via linearizations of both the input and
the output for structured prediction. We provide
a straightforward way of re-using representations
across NLP tasks that operate on different struc-
tures.

We demonstrate the effectiveness of DRAGNN
on two NLP tasks that benefit from explicit struc-
ture: dependency parsing and extractive sentence
summarization (Filippova and Altun, 2013). First,
we show how to use TBRUs to incrementally add
structure to the input and output of a “vanilla”
seq2seq dependency parsing model, dramatically
boosting accuracy over seq2seq with no additional

Encoder/Decoder (2 TBRU)

Bi-LSTM Tagging (3 TBRU)

Y1 Y2 Y3 Y4 Y5

Y1 Y2 Y3 Y4 Y5

Stack-LSTM (2 TBRU)
Y1 Y2 Y3 Y4 Y5

Transition Based Recurrent Unit (TBRU)

Network
Cell

Discrete
state

Recurrence fcn
Input embeddings

network activations

Figure 1: High level schematic of a Transition-Based Recurrent Unit (TBRU), and common network
architectures that can be implemented with multiple TBRUs. The discrete state is used to compute
recurrences and fixed input embeddings, which are then fed through a network cell. The network predicts
an action which is used to update the discrete state (dashed output) and provides activations that can be
consumed through recurrences (solid output). Note that we present a slightly simplified version of Stack-
LSTM (Dyer et al., 2015) for clarity.

NLP problems; Dyer et al. (2015); Lample et al.
(2016); Kiperwasser and Goldberg (2016); Zhang
et al. (2016); Andor et al. (2016), among others.
We generalize these approaches with a new ba-
sic module, the Transition-Based Recurrent Unit
(TBRU), which produces a vector representation
for every transition state in the output lineariza-
tion (Figure 1). These representations also serve
as the encoding of the explicit structure defined by
the states. For example, a TBRU that attaches two
sub-trees while building a syntactic parse tree will
also produce the hidden layer activations to serve
as an encoding for the newly constructed phrase.
Multiple TBRUs can be connected and learned
jointly to add explicit structure to multi-task learn-
ing setups and share representations between tasks
with different input or output spaces (Figure 2).

This inference procedure will construct an
acyclic compute graph representing the network
architecture, where recurrent connections are dy-
namically added as the network unfolds. We there-
fore call our approach Dynamic Recurrent Acyclic
Graphical Neural Networks, or DRAGNN.

DRAGNN has several distinct modeling advan-
tages over traditional fixed neural architectures.
Unlike generic seq2seq, DRAGNN supports vari-
able sized input representations that may contain
explicit structure. Unlike purely sequential RNNs,
the dynamic connections in a DRAGNN can span
arbitrary distances in the input space. Crucially,
inference remains linear in the size of the input, in
contrast to quadratic-time attention mechanisms.
Dynamic connections thus establish a compromise
between pure seq2seq and pure attention architec-

tures by providing a finite set of long-range in-
puts that ‘attend’ to relevant portions of the input
space. Unlike recursive neural networks (Socher
et al., 2010, 2011) DRAGNN can both predict in-
termediate structures (such as parse trees) and uti-
lize those structures in a single deep model, back-
propagating downstream task errors through the
intermediate structures. Compared to models such
as Stack-LSTM (Dyer et al., 2015) and SPINN
(Bowman et al., 2016), TBRUs are a more general
formulation that allows incorporating dynamically
structured multi-task learning (Zhang and Weiss,
2016) and more varied network architectures.

In sum, DRAGNN is not a particular neural ar-
chitecture, but rather a formulation for describing
neural architectures compactly. The key to this
compact description is a new recurrent unit—the
TBRU—which allows connections between nodes
in an unrolled compute graph to be specified dy-
namically in a generic fashion. We utilize tran-
sition systems to provide succinct, discrete repre-
sentations via linearizations of both the input and
the output for structured prediction. We provide
a straightforward way of re-using representations
across NLP tasks that operate on different struc-
tures.

We demonstrate the effectiveness of DRAGNN
on two NLP tasks that benefit from explicit struc-
ture: dependency parsing and extractive sentence
summarization (Filippova and Altun, 2013). First,
we show how to use TBRUs to incrementally add
structure to the input and output of a “vanilla”
seq2seq dependency parsing model, dramatically
boosting accuracy over seq2seq with no additional

Encoder/Decoder (2 TBRU)

Bi-LSTM Tagging (3 TBRU)

Y1 Y2 Y3 Y4 Y5

Y1 Y2 Y3 Y4 Y5

Stack-LSTM (2 TBRU)
Y1 Y2 Y3 Y4 Y5

Transition Based Recurrent Unit (TBRU)

Network
Cell

Discrete
state

Recurrence fcn
Input embeddings

network activations

Figure 1: High level schematic of a Transition-Based Recurrent Unit (TBRU), and common network
architectures that can be implemented with multiple TBRUs. The discrete state is used to compute
recurrences and fixed input embeddings, which are then fed through a network cell. The network predicts
an action which is used to update the discrete state (dashed output) and provides activations that can be
consumed through recurrences (solid output). Note that we present a slightly simplified version of Stack-
LSTM (Dyer et al., 2015) for clarity.

NLP problems; Dyer et al. (2015); Lample et al.
(2016); Kiperwasser and Goldberg (2016); Zhang
et al. (2016); Andor et al. (2016), among others.
We generalize these approaches with a new ba-
sic module, the Transition-Based Recurrent Unit
(TBRU), which produces a vector representation
for every transition state in the output lineariza-
tion (Figure 1). These representations also serve
as the encoding of the explicit structure defined by
the states. For example, a TBRU that attaches two
sub-trees while building a syntactic parse tree will
also produce the hidden layer activations to serve
as an encoding for the newly constructed phrase.
Multiple TBRUs can be connected and learned
jointly to add explicit structure to multi-task learn-
ing setups and share representations between tasks
with different input or output spaces (Figure 2).

This inference procedure will construct an
acyclic compute graph representing the network
architecture, where recurrent connections are dy-
namically added as the network unfolds. We there-
fore call our approach Dynamic Recurrent Acyclic
Graphical Neural Networks, or DRAGNN.

DRAGNN has several distinct modeling advan-
tages over traditional fixed neural architectures.
Unlike generic seq2seq, DRAGNN supports vari-
able sized input representations that may contain
explicit structure. Unlike purely sequential RNNs,
the dynamic connections in a DRAGNN can span
arbitrary distances in the input space. Crucially,
inference remains linear in the size of the input, in
contrast to quadratic-time attention mechanisms.
Dynamic connections thus establish a compromise
between pure seq2seq and pure attention architec-

tures by providing a finite set of long-range in-
puts that ‘attend’ to relevant portions of the input
space. Unlike recursive neural networks (Socher
et al., 2010, 2011) DRAGNN can both predict in-
termediate structures (such as parse trees) and uti-
lize those structures in a single deep model, back-
propagating downstream task errors through the
intermediate structures. Compared to models such
as Stack-LSTM (Dyer et al., 2015) and SPINN
(Bowman et al., 2016), TBRUs are a more general
formulation that allows incorporating dynamically
structured multi-task learning (Zhang and Weiss,
2016) and more varied network architectures.

In sum, DRAGNN is not a particular neural ar-
chitecture, but rather a formulation for describing
neural architectures compactly. The key to this
compact description is a new recurrent unit—the
TBRU—which allows connections between nodes
in an unrolled compute graph to be specified dy-
namically in a generic fashion. We utilize tran-
sition systems to provide succinct, discrete repre-
sentations via linearizations of both the input and
the output for structured prediction. We provide
a straightforward way of re-using representations
across NLP tasks that operate on different struc-
tures.

We demonstrate the effectiveness of DRAGNN
on two NLP tasks that benefit from explicit struc-
ture: dependency parsing and extractive sentence
summarization (Filippova and Altun, 2013). First,
we show how to use TBRUs to incrementally add
structure to the input and output of a “vanilla”
seq2seq dependency parsing model, dramatically
boosting accuracy over seq2seq with no additional

*Kong et al., (2017)

Generating NLP with SyntaxNet

Obtaining
Data

POS
Tagging

Training
SyntaxNet
POS tagger

Dependency
parsing

Transition-based
Parsing

Training
Parser

SyntaxNet implementation
▪Not a BOW (Bag-of-

words) model

▪Workflow
▪POS Tagging model

▪Preprocessing with
tagger model

▪Dependency parsing

*github.com/tensorflow/tensorflow

SyntaxNet implementation
▪Transition-based dependency parser

▪SHIFT, LEFT ARC, RIGHT ARC

▪“deviation”
▪Configuration+Action

▪Training
▪Local pre-training / global training

*Kong et al., (2017)

Dive into TBRU
▪TBRU schematic

▪Arc-standard transition
▪Choose the right candidate

LSTM / MLP
Cell

LSTM / MLP
Cell

m(si)

LSTM / MLP
Cell

hi

si

· · ·

· · ·s1 s2

m(s1) m(s2)

h1 h2

LSTM / MLP
Cell

h3

s3

m(s3)

r(si) = {1, 3}

d1 argmax

d�A(s1)
w

�
d h1 d2 argmax

d�A(s2)
w

�
d h2

· · ·

· · · Bob gave Alice a pretty flower on Monday .

nsubj iobj

punct

dobj

det
amod prep pobj

gave flower on Monday .

Bob Alice

nsubj iobj

a pretty

det amod

Stack Buffer

gave
flower

on Monday .

Bob Alice

nsubj iobj

a pretty

det amod

gave flower Monday .

Bob Alice

nsubj iobj

a pretty

det amod

on

dobj

Transition state:

Dependency Parse: Buffer

d = Shift (correct)

d = Right arc (incorrect)

Figure 3: Left: TBRU schematic. Right: Dependency parsing example. A gold parse tree and an arc-
standard transition state with two sub-trees on the stack are shown. From this state, two possible actions
are also shown (Shift and Right arc). To agree with the gold tree, the Shift action should be taken.

• A recurrence function r(s) that maps states
to a set of previous time steps:

r(s) : S 7! P{1, . . . , i� 1},

where P is the power set. Note that in general
|r(s)| is not necessarily fixed and can vary
with s. We use r to specify state-dependent
recurrent links in the unrolled computation
graph.

• A RNN cell that computes a new hidden rep-
resentation from the fixed and recurrent in-
puts:

hs RNN(m(s), {hi | i 2 r(s)}).

Example 1. Sequential tagging RNN. Let the
input x = {x1, . . . ,xn} be a sequence of word
embeddings, and the output be a sequence of tags
d1, . . . , dn. Then we can model a simple LSTM
tagger as follows:

• T sequentially tags each input token, where
si = {1, . . . , di�1}, and A is the set of pos-
sible tags. We call this the tagger transition
system.

• m(si) = xi, the word embedding for the next
token to be tagged.

• r(si) = {i�1} to connect the network to the
previous state.

• RNN is a single instance of the LSTM cell.

Example 2. Parsey McParseface. The open-
source syntactic parsing model of Andor et al.
(2016) can be defined in our framework as fol-
lows:

• T is the arc-standard transition system (Fig-
ure 3), so the state contains all words and par-
tially built trees on the stack as well as unseen
words on the buffer.

• m(si) is the concatenation of 52 feature
embeddings extracted from tokens based on
their positions in the stack and the buffer.

• r(si) = {} is empty, as this is a feed-forward
network.

• RNN is a feed-forward multi-layer percep-
tron (MLP).

Inference with TBRUs. Given the above, infer-
ence in the TBRU proceeds as follows:

1. Initialize s1 = s†.
2. For i = 1, . . . , n:

(a) Update the hidden state:
hi RNN(m(si), {hj | j 2 r(si)}).

(b) Update the transition state:
di argmaxd2A(si) w

>
d hi, si+1

t(si, di).

A schematic overview of a single TBRU is pre-
sented in Figure 3. By adjusting RNN, r, and
T , TBRUs can represent a wide variety of neural
architectures.

3.1 Connecting multiple TBRUs to learn
shared representations

While TBRUs are a useful abstraction for describ-
ing recurrent models, the primary motivation for
this framework is to allow new architectures by
combining representations across tasks and com-
positional structures. We do this by connecting
multiple TBRUs with different transition systems
via the recurrence function r(s). We formally aug-
ment the above definition as follows:

1. We execute a list of T TBRU components,
one at a time, so that each TBRU advances a
global step counter. Note that for simplicity,
we assume an earlier TBRU finishes all of its
steps before the next one starts execution.

LSTM / MLP
Cell

LSTM / MLP
Cell

m(si)

LSTM / MLP
Cell

hi

si

· · ·

· · ·s1 s2

m(s1) m(s2)

h1 h2

LSTM / MLP
Cell

h3

s3

m(s3)

r(si) = {1, 3}

d1 argmax

d�A(s1)
w

�
d h1 d2 argmax

d�A(s2)
w

�
d h2

· · ·

· · · Bob gave Alice a pretty flower on Monday .

nsubj iobj

punct

dobj

det
amod prep pobj

gave flower on Monday .

Bob Alice

nsubj iobj

a pretty

det amod

Stack Buffer

gave
flower

on Monday .

Bob Alice

nsubj iobj

a pretty

det amod

gave flower Monday .

Bob Alice

nsubj iobj

a pretty

det amod

on

dobj

Transition state:

Dependency Parse: Buffer

d = Shift (correct)

d = Right arc (incorrect)

Figure 3: Left: TBRU schematic. Right: Dependency parsing example. A gold parse tree and an arc-
standard transition state with two sub-trees on the stack are shown. From this state, two possible actions
are also shown (Shift and Right arc). To agree with the gold tree, the Shift action should be taken.

• A recurrence function r(s) that maps states
to a set of previous time steps:

r(s) : S 7! P{1, . . . , i� 1},

where P is the power set. Note that in general
|r(s)| is not necessarily fixed and can vary
with s. We use r to specify state-dependent
recurrent links in the unrolled computation
graph.

• A RNN cell that computes a new hidden rep-
resentation from the fixed and recurrent in-
puts:

hs RNN(m(s), {hi | i 2 r(s)}).

Example 1. Sequential tagging RNN. Let the
input x = {x1, . . . ,xn} be a sequence of word
embeddings, and the output be a sequence of tags
d1, . . . , dn. Then we can model a simple LSTM
tagger as follows:

• T sequentially tags each input token, where
si = {1, . . . , di�1}, and A is the set of pos-
sible tags. We call this the tagger transition
system.

• m(si) = xi, the word embedding for the next
token to be tagged.

• r(si) = {i�1} to connect the network to the
previous state.

• RNN is a single instance of the LSTM cell.

Example 2. Parsey McParseface. The open-
source syntactic parsing model of Andor et al.
(2016) can be defined in our framework as fol-
lows:

• T is the arc-standard transition system (Fig-
ure 3), so the state contains all words and par-
tially built trees on the stack as well as unseen
words on the buffer.

• m(si) is the concatenation of 52 feature
embeddings extracted from tokens based on
their positions in the stack and the buffer.

• r(si) = {} is empty, as this is a feed-forward
network.

• RNN is a feed-forward multi-layer percep-
tron (MLP).

Inference with TBRUs. Given the above, infer-
ence in the TBRU proceeds as follows:

1. Initialize s1 = s†.
2. For i = 1, . . . , n:

(a) Update the hidden state:
hi RNN(m(si), {hj | j 2 r(si)}).

(b) Update the transition state:
di argmaxd2A(si) w

>
d hi, si+1

t(si, di).

A schematic overview of a single TBRU is pre-
sented in Figure 3. By adjusting RNN, r, and
T , TBRUs can represent a wide variety of neural
architectures.

3.1 Connecting multiple TBRUs to learn
shared representations

While TBRUs are a useful abstraction for describ-
ing recurrent models, the primary motivation for
this framework is to allow new architectures by
combining representations across tasks and com-
positional structures. We do this by connecting
multiple TBRUs with different transition systems
via the recurrence function r(s). We formally aug-
ment the above definition as follows:

1. We execute a list of T TBRU components,
one at a time, so that each TBRU advances a
global step counter. Note that for simplicity,
we assume an earlier TBRU finishes all of its
steps before the next one starts execution.

Bob gave Alice a pretty flower on Monday .

Bob

gave

Alice a pretty

flower on Monday

Stack Buffer

INPUT(s)

=

= =

.
.

Sh Sh L Sh R Sh Sh Sh L L

Unrolled graph (incomplete): Recurrent inputs:

TBRU 1

TBRU 2

Subtree(s, S0) Subtree(s, S1)

Figure 4: Detailed schematic for the compositional dependency parser used in our experiments. TBRU 1
consumes each input word right-to-left. TBRU 2 uses the arc-standard transition system. Note how each
Shift action causes the TBRU 1!TBRU 2 link to advance. The dynamic recurrent inputs to each state are
highlighted; the stack representations are obtained from the last Reduce action to modify each sub-tree.

2. Each transition state from the ⌧ ’th compo-
nent s⌧ has access to the terminal states from
every prior transition system, and the recur-
rence function r(s⌧) for any given compo-
nent can pull hidden activations from every
prior one as well.

Example 3. “Input” transducer TBRUs via no-
op decisions. We find it useful to define TBRUs
even when the transition system decisions don’t
correspond to any output. These TBRUs, which
we call no-op TBRUs, transduce the input accord-
ing to some linearization. The simplest is the shift-
only transition system, in which the state is just an
input pointer si = {i}, and there is only one tran-
sition which advances it: t(si, ·) = {i + 1}. Exe-
cuting this transition system will produce a hidden
representation hi for every input token.

Example 4. Encoder/decoder networks with
TBRUs. We can reproduce the encoder/decoder
framework for sequence tagging by using two
TBRUs: one using the shift-only transition system
to encode the input, and the other using the tagger
transition system. For input x = {x1, . . . ,xn},
we connect them as follows:

• For shift-only TBRU: m(si) = xi, r(si) =

{i � 1}.
• For tagger TBRU: m(sn+i) = ydn+i�1 ,

r(si) = {n, n + i � 1}.
We observe that the tagger TBRU starts at step

n after the shift-only TBRU finishes, that yj is a
fixed embedding vector for the output tag j, and
that the tagger TBRU has access to both the fi-
nal encoding vector hn as well as its own previous
time step hn+i�1.

Example 4. Bi-directional LSTM tagger. With
three TBRUs, we can implement a simple bi-

directional tagger. The first two run the shift-only
transition system, but in opposite directions. The
final TBRU runs the tagger transition system and
concatenates the two representations:

• Left to right: T = shift-only, m(si) = xi,
r(si) = {i � 1}.

• Right to left: T = shift-only, m(sn+i) =

xn�i, r(sn+i) = {n + i � 1}.
• Tagger: T = tagger, m(s2n+i) = {},

r(s2n+i) = {i, 2n � i}.
We observe that the network cell in the tag-

ger TBRU takes recurrences only from the bi-
directional representations, and so is not recurrent
in the traditional sense. See Fig. 1 for an unrolled
example.

Example 5. Multi-task bi-directional tagging.
Here we observe that it’s possible to add addi-
tional annotation tasks to the bi-directional TBRU
stack from Example 4 simply by adding more in-
stances of the tagger TBRUs that produce outputs
from different tag sets, e.g. parts-of-speech vs.
morphological tags. Most important, however, is
that any additional TBRUs have access to all three
earlier TBRUs. This means that we can support
the “stack-propagation” (Zhang and Weiss, 2016)
style of multi-task learning simply by changing r

for the last TBRU:
• Traditional multi-task:

r(s3n+i) = {i, 2n � i}

• Stack-prop:

r(s3n+i) = { i|{z}
Left-to-right

, 2n � i| {z }
Right-to-left

, 2n + i| {z }
Tagger TBRU

}

Remark: the raison d’

ˆ

etre of DRAGNN. This
example highlights the primary advantage of our

*Kong et al., (2017)

Model differences
▪DRAGNN[1]: End-to-end, deep recurrent models

▪Use to extend SyntaxNet[2] to be end-to-end deep learning model

▪TBRU: Transition-Based Recurrent Unit
▪ Uses both encoder and decoder

▪TBRU-based multi-task learning : DRAGNN

▪SyntaxNet: Transition-based NLP
▪Can train SyntaxNet using DRAGNN framework

[1] Kong et al., (2017)
[2] Andor et al., (2016)

Parsey McParseface
▪Parsey McParseface (2017)

▪State-of-art deep learning-based text parser

▪Performance comparison Model News Web Questions
Martins et al.

(2013) 93.10 88.23 94.21

Zhang and
McDonald

(2014)
93.32 88.65 93.37

Weiss et al.
(2015) 93.91 89.29 94.17

Andor et al.
(2016)* 94.44 90.17 95.40

Parsey
McParseface 94.15 89.08 94.77

Model News Web Questions
Ling et al.

(2015) 97.44 94.03 96.18

Andor et al.
(2016)* 97.77 94.80 96.86

Parsey
McParseface 97.52 94.24 96.45

POS (part-of-speech) tagging For different language domains

*github.com/tensorflow/tensorflow

McParseface model / DRAGNN framework

*github.com/tensorflow/tensorflow

SyntaxNet Architecture

*github.com/tensorflow/tensorflow

DRAGNN implementation
▪DRAGNN implementation on TensorFlow

*github.com/tensorflow/tensorflow

Compute Graph
▪Compute graph for SyntaxNet

▪Example case in TensorFlow repo.

▪Three parts of NLP
▪Lookahead
▪Tagger
▪Parser

▪Characteristics
▪Every model uses memory effect

*github.com/tensorflow/tensorflow

Why no Korean?
▪Korean language-specific characteristics

▪Solution?
▪Yes, I think. (testing now.)

Looks easier but harder, in fact.

Now, let’s move to the emotion part.

Problems for next-gen chatbots
▪Hooray! Deep-learning based chat bots works well with Q&A scenario!

▪General problems
▪Inhuman: restricted for model training sets

▪Cannot "start" conversation

▪Cannot handle continuous conversational context and its changes

▪“Uncanny Valley”
▪Inhuman speech / conversation.

▪Why? How?

Lexical
Output

Sentence generatorDeep-learning model
(sentence-to-sentence

+ context-aware word generator)

Emotion engine

Grammar
generator

Context memory

Knowledge engine

Emotion engine

Context
parser Tone

generator

Disintegrator

Response generatorNLP + StV Context analyzer+Decision maker

Lexical
Input

Today’s focus!

Conversational context locator
▪Using Skip-gram and bidirectional 1-gram distribution in recent text

▪I ate miso soup this morning. => Disintegrate first

▪Bidirectional 1-gram set (reversible trigram): {(I,miso soup),Eat}, {(eat,today),miso soup},
{(miso soup,morning),today}

▪Simplifying: {(<I>,<FOOD>),<EAT>}, {(<EAT>,Today),<FOOD>}, {(<FOOD>,morning),Today}

▪Distribution: more simplification is needed
▪ {(<I>,<FOOD>), <EAT>}, {(<TIME:DATE>,<EAT>), <FOOD>}, {(<FOOD>,<TIME:DAY>),< TIME:DATE>}
▪ Now we can calculate multinomial distribution

I Today MorningMiso soupEat

<I> Today Morning<FOOD><EAT>

<I> <TIME:DATE> <TIME:DAY><FOOD><EAT>

*I’ll use trigram as abbreviation of reversible trigram

Conversational context locator
▪Using Skip-gram and bidirectional 1-gram distribution in recent text

▪나는 오늘 아침에 된장국을 먹었습니다. => Disintegrate first

▪Bidirectional 1-gram set: {(나,아침),오늘}, {(오늘,된장국),아침}, {(아침,먹다),된장국}

▪Simplifying: {(<I>,아침),오늘}, {(오늘,<FOOD>),아침}, {(아침,<EAT>),<FOOD>}

▪Distribution: more simplification is needed
▪ {(<I>,<TIME:DAY>), <TIME:DATE>}, {(<TIME:DATE>,<FOOD>), <TIME:DAY>}, {(<TIME:DAY>,<

EAT>),<FOOD>}
▪ Now we can calculate multinomial distribution

나 오늘 아침 된장국 먹다

<I> 오늘 아침 <FOOD> <EAT>

<I> <TIME:DATE> <TIME:DAY> <FOOD> <EAT>

Conversational context locator
▪ Training context space

▪ Context-marked sentences (>20000)
▪ Context: LIFE / CHITCHAT / SCIENCE

/ TASK
▪ Prepare Generated trigram sets

with context bit
▪ Train RNN with 1-gram-2-vec

▪ Matching context space
▪ Input trigram sequence to context

space
▪ Take the dominator axis

▪ Using Skip-gram and trigram
distribution in recent text
▪ {(<I>,<TIME:DAY>), <TIME:DATE>}
▪ {(<TIME:DATE>,<FOOD>),

<TIME:DAY>}
▪ {(<TIME:DAY>,<EAT>),<FOOD>}

▪ With distribution
▪ Calculate maximum likelihood

significance and get significant n-
grams

▪ Uses last 5 sentences

For better performance
▪ Characteristics of Korean

Language
▪ Distance between words:

important

▪ Sequence between words: not
important

▪ Different from English

▪ How to read more contextual
information from longer text?
(e.g. Documents)

▪ Change from trigram to in-range tri pairs

▪ I ate miso soup this morning:

▪ In range 1: {(<I>,<FOOD>), <EAT>}

▪ In range 2: {(<TIME:DATE>), <EAT>}

▪ In range 3: {(<TIME:DAY>), <EAT>}

▪ Heavily depends on the length of original
sentence
▪ Short?

▪ Long?

<I> <TIME:DATE> <TIME:DAY><FOOD><EAT>

Emotion engine
▪Input: text sequence

▪Output: Emotion flag (6-type / 3bit)

▪Training set
▪Sentences with 6-type categorized emotion

▪Positivity (2), negativity (2), objectivity (2)
▪Uses senti-word-net to extract emotion
▪6-axis emotion space by using Word2Vec model
▪Current emotion indicator: the most weighted emotion axis using Word2Vec

model

Illustration *(c) http://ontotext.fbk.eu/
[0.95, 0.05, 0.11, 0.89, 0.92, 0.08]

[1, 0, 0, 0, 0, 0] 0x01
index: 1 2 3 4 5 6

Position in senti-space:

Making emotional context locator
▪ Similar to conversational context

locator
▪ Just use 1-gram from input

▪ Add the corresponding word vector
on emotion space

▪ How to?
▪ Use NLTK python library

▪ NLTK has corpora / data for
SentiWordNet

▪ Also gives download option!

Downloading NLTK dataset

Making emotional context locator
▪ Get emotional flag from sentence

Sample test routine for Sentimental state

Adj. only

All morpheme

Creating Korean SentiWordNet
▪Procedure to generate Korean SentiWordNet corpus

불구의
알맞다
만족스럽다
적합하다
훌륭하다
부적합하다

2. Translate words into Korean
3. Treat

synonym
불구의
알맞다
적합하다
어울리다
만족스럽다
적합하다
훌륭하다
부적합하다

4. Choose the score from ‘representative word’

1. Get every synsets from sentiwordnet data

Reading emotion with SentimentSpace
▪Creating emotion space

▪1. Generate word space using word2vec model

▪2. Substitute word to SentiWordNet set

▪3. Now we get SentimentSpace!

▪4. Get the emotion state by giving disintegrated word
set into SentimentSpace

▪Focuses on reading emotion
▪Final location on WordVec space = Average

sentivector of nearest neighbors

*SentimentSpace: our definition / approach to simulate emotion.

WordVec Space

[.85, .15, .0]
[.75, .05, .20]

[.65, .15, .20]

[.25, .10, .65]

Tips for SentimentSpace
▪When picking the best match from candidates

▪e.g. fit ➜

▪1. Just pick the first candidate from senti sets
▪2. Calc the average Pos/Neg scores- [0.25, 0]

▪When generating Korean SentiWordNet corpus
▪1. Do not believe the result. You will need tremendous amount of pre /

postprocessing
▪SentimentSpace is very rough. Keep in mind to model the emotion engine

Summary
▪Today

▪Dive into SyntaxNet and DRAGNN

▪Emotion reading procedure using SentiWordNet and deep learning

▪My contributions / insight to you
▪Dodging Korean-specific problems when using SyntaxNet

▪My own emotion reading / simulation algorithm

BETA

Thank you for listening :)
@inureyes /
fb/jeongkyu.shin

lablup.com

