기계 학습 기반 감정 인식 게임 개발

2016.06.03 홍익대학교 게임학부 / 조교수

강신진

소개: 강신진

경력

- 홍익대학교 게임학부, 조교수 (2008-현재)
- 엔씨소프트(NCsoft) (2006-2008)
- 소니 컴퓨터 엔터테인먼트 코리아(Sony Computer Entertainment Korea) (2003-2006)
- 상용 게임
 - 아이온 (AION), 와일드스타 (WildStar), 블레이드 앤 소울 (Blade and Soul) 외 10여 개의 PC, 모바일, 콘솔 게임 프로젝트 참여

Evolutionary Game Lab

EGLAB Research

Index

- Machine Learning in Computer Games
- Affective Computing in Computer Games
- [ML + Affective Computing] Game Development

Machine Learning in Commercial Games

Black and White (Lionhead, 2001)

Forza Motorsport (Microsoft, 2005)

F.E.A.R. (Monolith Production, 2005)

HALO3 (Microsoft, 2007)

Virtua Fighter Ghost System (SEGA, 2015)

Tekken 5: Dark Resurrection (Namco, 2016)

Blade & Soul (NCsoft, 2016)

전략 무공

무한의 탑에서는 탑 내부에서만 사용할 수 있는 '전략 무공'을 사용할 수 있습니다. 도전자는 전투에 돌입하기 전, 준비 시간 동안 3가지의 전략 무공 중 하나를 선택할 수 있으며, 전투 중 언제든지 [`]키를 이용하여 전략 무공은 사용할 수 있습니다. 20여 가지의 다양한 전략 무공이 준비되어 있으며, 층을 오르면 사용한 전략 무공의 자리에 새로운 전략 무공이 채워지게 됩니다. 단, 선택한 전략 무공은 해당 층에서만 사용할 수 있으며, 전투 중 사용하지 않더라도 사리지는 점 주의하시길 바랍니다.

ML in Computer Games

Strengths

- Re-playability
- Emergent Game Play

Weakness

- Limitation of CPU resources for AI
- Low Development Priority
- Absence of Evaluation Function
- ML Content is not Fun
- ML Content is Unpredictable

Index

- Machine Learning in Computer Games
- Affective Computing in Computer Games
- [ML + Affective Computing] Game Development

Affective Computing in Commercial Games

Mindlink (ATARI, 1984)

Tokimeki Memorial (Konami, 1997)

Relax to Win Game (McDarby, 2002)

PlayStation Eyetoy / Microsoft Kinect (2003)

Mindwave (Neurosky, 2012)

Affective Computing in Computer Games

Strengths

- Providing New Experience
- Market Share Expansion

Weakness

- Intrusive Additional Hardware
- Low Recognition Rate of Player's Emotion

Index

- Machine Learning in Computer Games
- Affective Computing in Computer Games
- [ML + Affective Computing] Game Development

Commercially Successful Games

Strengths

- Re-playability
- Emergent Game Play

Strengths

- Providing New Experience
- Market Share Expansion

Weakness

- Limitation of CPU resources for AI
- Low Development Priority
- Absence of Evaluation Function
- ML Content is not Fun
- ML Content is Unpredictable

Weakness

- Intrusive Additional Hardware
- Low Recognition Rate of Player's Emotion

- Limitation of CPU resources for AI
- Low Development Priority
- Content is not Fun
- Content is Unpredictable
- Intrusive Additional Hardware
- Low Recognition Rate of Player's Emotion
- Absence of Evaluation Function

Solutions

- Limitation of CPU resources for AI -> AI Oriented Content
- Low Development Priority **→** Long Term Project
- Content is not Fun → Appropriate Genre
- Content is Unpredictable -> Non-Competitive Game
- Intrusive Additional Hardware
 Non-Intrusive/Default Hardware
- Low Recognition Rate of Player's Emotion -> ML with Big Data
- Absence of Evaluation Function -> Robust Emotional Model

EGLAB Research

Embodied Conversational Agent (ECA)

GRETA, SEMAINE, HUMAINE (2007)

Summer Lesson, BabyX (2016)

Summer Lesson (Namco, 2015)

BabyX (Sagar, 2016)

ECA Core Technologies

ECA Core Technologies

Implementation Results

"Love Senor"

Implementation Results

Solutions

- Limitation of CPU resources for AI -> AI Oriented Content
- Low Development Priority **→** Long Term Project
- Content is not Fun → Appropriate Genre
- Content is Unpredictable -> Non-Competitive Game
- Intrusive Additional Hardware
 Non-Intrusive/Default Hardware
- Low Recognition Rate of Player's Emotion -> ML with Big Data
- Absence of Evaluation Function -> Robust Emotional Model

Hardware for Affective Computing

Intrusive H/W

- EEG
- Heart Rate
- Depth Camera
- Brain Wave

Non-Intrusive H/W

- Multimodal Interface
- Keyboard
- Mouse
- Webcam

EGLAB Research

Implementation Result

"Emotion Recognition System with Multimodal Interface"

Implementation Result

"Emotion Tracer Client"

Solutions

- Limitation of CPU resources for AI -> AI Oriented Content
- Low Development Priority **→** Long Term Project
- Content is not Fun → Appropriate Genre
- Content is Unpredictable -> Non-Competitive Game
- Intrusive Additional Hardware
 Non-Intrusive/Default Hardware
- Low Recognition Rate of Player's Emotion -> ML with Big Data
- Absence of Evaluation Function -> Robust Emotional Model

EGLAB Research

Discrete Emotion Model

6 universal emotions

0

happiness Occurs feel wrinkles · @pushed up cheeks movement from muscle that orbits the eye

fear 0 • () eyebrows raised and pulled together @raised upper eyelids () tensed lower eyelids

surprise Casto for only are second - Deves widered ()mouth open

disgust

Onose wrinkling

Oupper lip raised

ATT 1

 Inner Brow Raiser
 Outer Brow Raiser
 Brow Lowerer
 Upper Lid Raiser

 *AU 41
 *AU 42
 *AU 43
 AU 44
 Cheek Raiser Lid Tightener AU 46 AU 45 00 00 Squint Blink Wink Lower Face Action Units AU 11 AU 12 AU 13 AU 14 Cheek Lip Corner Nasolabial Puller Deepener AU 16 AU 17 AU 22 AU 18 AU 20 Lip Lip Lip Puckerer Stretcher Funneler AU 24 *AU 25 *AU 26 *AU 27 AU 28 AU 23 Lip Lip Lips Part Jaw Drop Mouth Stretch Lip Suck Tightener Pressor

Upper Face Action Units

AU 7

Ekman's 6 Universal Emotions

Dimensional Theory

The PAD (*Pleasure, Arousal, Dominance*) model, Albert Mehrabian and James A. Russell

Evolutionary Model

- Plutchik's wheel of emotions

OCC Model

A Better Narrative using OCC Emotional Model

by Rizky Winanda on 05/13/14 07:40:00 pm Featured Post

8 comments 🔄 🛉 Share 🛛 🔊

The following blog post, unless otherwise noted, was written by a member of Gamas The thoughts and opinions expressed are those of the writer and not Gamasutra or \hat{n}

Narative is a complicated word. Some people believe that narrative could incre: others say it is only a tainted game play. I won't start a fuss about it, but I narrative holds a prospect in the game. This year GPC, Ken Levine, presented narrative in a game referred as Narrative Lego. I see a big chance on it though chance where narrative not only acting as decoration, but also a core of t motivates me to do my own little research about narrative. Herewith, I will pres

In my opinion, the narrative is considered great when it triggers emotional effe happens, the character in the game must possess emotion itself and delivers cocould feel the character's emotion in order to create empathy towards the creating a great narrative is to know more about emotion, explore how many them. There are many concepts about emotion that we can use, but if il use OO how the emotion created in a structural way which makes it easier to understa into philosophy or psychology, read about emotion will push your brain off to the

The sequence of appraisal where square represents event, triangle represents action, object.

Example of chain of action-event

Circuit Model (Neural Darwinism)

Figure10.3.Slow and Fast Emotional Pathways

Finite State Machine (FSM)

Behavior Tree

Decision Tree

MHP (Model Human Process)

Figure 1. Model Human Processor. Based on Card, Moran, and Newell (1983).

Parameter	Mean	Range
Eye movement time	230 ms	70-700 ms
Decay half-life of visual image storage	200 ms	90-1000 ms
Visual Capacity	17 letters	7-17 letters
Decay half-life of auditory storage	1500 ms	90-3500 ms
Auditory Capacity	5 letters	4.4-6.2 letters
Perceptual processor cycle time	100 ms	50-200 ms
Cognitive processor cycle time	70 ms	25-170 ms
Motor processor cycle time	70 ms	30-100 ms
Effective working memory capacity	7 chunks	5-9 chunks
Pure working memory capacity	3 chunks	2.5-4.2 chunks
Decay half-life of working memory	7 sec	5-226 sec
Decay half-life of 1 chunk working memory	73 sec	73-226 sec
Decay half-life of 3 chunks working memory	7 sec	5-34 sec

- Cognitive Model (Card, Moran, and Newell)

ACT-R (Adaptive Control of Thought)

^{pyramid} Cognitive Architecture (Anderson & Lebiere)

SOAR (State, Operator And Result)

Cognitive Architecture (Laird, 2008; Laird, Newell, & Rosenbloom, 1987; Newell, 1990)

Deep Q-Learning

GREEDY													
Time Step GREEDY	10732	22 /	ACTION			REWARD	0.0	EPSILON	0.100000	Q_max	1.197432	OOO ALLE VIE	
Time Step	10732	23 /	ACTION			REWARD	0.0	EPSILON	0.100860	Q_max	1.238865	H	14
Time Step	10732	24 /	ACTION			REWARD	0.0	EPSILON	0.100000	Q_max	1.276253		
Time Step	10732		ACTION			REWARD	0.0	EPSILON	0.100000	Q_max	1.267412		
Time Step	10732	26 /	ACTION			REWARD	6.0	EPSILON	0.100000	Q_max	1.367146		
Time Step	10732		ACTION			REWARD	0.0	EPSILON	0.100800	Q_max	1.327974		
Time Step	10732	28 /	ACTION			REWARD	0.0	EPSILON	0.100000	Q_max	1.158490		
Time Step	10732	29 /	ACTION			REWARD	0.0	EPSILON	0.100000	Q_max	1.410332		
Time Step	10732	30 /	ACTION			REWARD	0.0	EPSILON	0.100800	Q_max	1.393161		
Time Step	10732		ACTION			REWARD	0.0	EPSILON	0.100000	Q_max	1.391696		
Time Step	10732	32 /	ACTION			REWARD	0.0	EPSILON	0.100000	Q_max	1.153511	1.00	
Time Step	10732	33 /	ACTION			REWARD	0.0	EPSILON	8.100800	Q_max	1.154758		
ON 15 Lear	rning						and the second						
DON is Lear	, rning	2557	sceps		-0	LOLAL P	ewaro						
pisode 70	B	3061	steps			total r	award						
pisode 70	9 rning	2818	steps	10		total r	eward						

Neural Engineering Framework

- Nengo: graphical and scripting based software package for simulating large-scale neural systems,

- SPAUN: 2.5 million simulated neurons

EGLAB Research

Future Works: Façade (Mateas & Stern, 2004)

Future Works: Seaman (SEGA, 1999)

경청해 주셔서 감사합니다.

http://www.myeglab.com/

