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Drug Prioritization using the semantic properties of a Knowledge Graph, Nature 2019



Knowledge Graphs
Knowledge Graphs are graph-structured Knowledge Bases, where knowledge is 
encoded by relationships between entities.

subject predicate object

Barack Obama was born in Honolulu

Hawaii has capital Honolulu

Barack Obama is politician of United States

Hawaii is located in United States

Barack Obama is married to Michelle Obama

Michelle Obama is a Lawyer

Michelle Obama lives in United States



Industry-Scale Knowledge Graphs
In many enterprises, Knowledge Graphs are critical — they provide structured data 
and factual knowledge that drives many products, making them more “intelligent”.



Industry-Scale Knowledge Graphs in Microsoft

In Microsoft there are several major graph systems used by 
products:

• Bing Knowledge Graph — contains information about 
the world and powers question answering services on 
Bing.

• Academic Graph — collection of entities such as 
people, publications, felds of study, conferences, etc. 
and helps users discovering relevant research works.

• LinkedIn Graph — contains entities such as people, 
jobs, skills, companies, etc. and it is used to find 
economy-level insights for countries and regions.

~2 Billion primary entities, ~55 Billion Facts



Industry-Scale Knowledge Graphs in Google

The Google Knowledge Graph contains more 
than 70 billion assertions describing a billion 
entities and covers a variety of subject matter 
— “things not strings”.

Used for answering factoid queries about 
entities served from the Knowledge Graph.

1 Billion entities, ~70 Billion assertions



Industry-Scale Knowledge Graphs in Facebook
World’s largest social graph — Facebook’s Knowledge 
Graph focuses on socially relevant entities, such as 
celebrities, places, movies, and music. Used to 
recommend smart replies, entity detection, and easy 
sharing.

~50 mllion primary entities, ~500 million assertions



The Linked Open Data Cloud

Linked Open Data cloud - over 1200 
interlinked KGs encoding more than 200M 
facts about more than 50M entities.

Spans a variety of domains, such as 
Geography, Government, Life Sciences, 
Linguistics, Media, Publications, and Cross-
domain

Name Entities Relations Types Facts
Freebase 40M 35K 26.5K 637M

DBpedia (en) 4.6M 1.4K 735 580M

YAGO3 17M 77 488K 150M
Wikidata 15.6M 1.7K 23.2K 66M



Knowledge Graphs and Explainable AI

LOD-based Explanations for Transparent Recommender Systems - IJHCS 
Linked Open Data to Support Content-Based Recommender Systems - ICSS 
Top-n recommendations from implicit feedback leveraging linked open data - RECSYS

We can use Knowledge Graphs 
for explaining the decisions of 
Machine Learning algorithms, 
such as recommender systems, 
and design machine learning 
models that are less prone to 
capturing spurious correlations 
in the data.

• Locally vs. Globally
• Ad-hoc vs. Post-hoc
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Knowledge Graphs and Explainable AI

On the Role of Knowledge Graphs in Explainable AI - SWJ 
Dynamic Integration of Background Knowledge in Neural NLU Systems 

We can use Knowledge Graphs 
for explaining the decisions of 
Machine Learning algorithms, 
such as recommender systems, 
and design machine learning 
models that are less prone to 
capturing spurious correlations 
in the data.

• Locally vs. Globally
• Ad-hoc vs. Post-hoc



Knowledge Graphs Construction
Knowledge Graph construction methods can be classified in:

• Manual — curated (e.g. via experts), collaborative (e.g. via volunteers)

• Automated — semi-structured (e.g. from infoboxes), unstructured (e.g. from text)

Coverage is an issue:

• Freebase (40M entities) - 71% of persons without a birthplace, 75% without a 
nationality, even worse for other relation types [Dong et al. 2014]

• DBpedia (20M entities) - 61% of persons without a birthplace, 58% of scientists 
missing why they are popular [Krompaß et al. 2015]

Relational Learning can help us overcoming these issues and - in general - with 
learning from relational representations.



Relational Learning in Knowledge Graphs

● Dyadic Multi-Relational Data [Nickel et al. 2015, Getoor et al. 2007]

● Many possible relational learning tasks:
○ Link Prediction — Identify missing relationships between entities
○ Collective Classification — Classify entities based on their relationships
○ Link-Based Clustering — Cluster entities based on their relationships
○ Entity Resolution — Entity mapping/deduplication

Relational structure is a rich source of information.
In general, the i.i.d. assumption does not hold in this context.



Statistical Relational Learning

yspo = {1 if xspo ∈ 𝒢
0 otherwise

entries in Y ∈ {0,1}|ℰ|×|ℛ|×|ℰ|

Task — model the existence of each triple                                              as 
binary random variables                      indicating whether         is in the KG:

xspo = (s, p, o) ∈ ℰ × ℛ × ℰ
yspo ∈ {0,1} xspo

Every realisation of      denotes a possible world - modelling            allows 
predicting triples based on the state of the entire Knowledge Graph.

Scalability is important - e.g. on Freebase (40M entities), the number of variables 
to represent can be quite large:

Y P (Y)

|ℰ × ℛ × ℰ | > 1019



Types of Statistical Relational Learning Models

Depending on our assumptions on            , we end up with three model classes:

• Latent Feature Models: variables                      are conditionally independent 
given the latent features      associated with subject, predicate, and object:

• Observable Feature Models: related to Latent Feature Models, but      are now 
graph-based features, such as paths linking the subject and the object.

• Graphical Models: variables                      are not assumed to be conditionally 
independent — each        can depend on any of the other random variables in     .

P (Y)
yspo ∈ {0,1}

Θ

∀xi, xj ∈ ℰ × ℛ × ℰ, xi ≠ xj : yi ⊥⊥ yj ∣ Θ
Θ

yspo ∈ {0,1}
yspo Y



Conditional Independence Assumption

Assuming all        variables are conditionally independent allows modelling their 
existence via a scoring function                       representing the likelihood that a triple 
is in the KG, conditioned on the parameters     :

P (Y ∣ Θ) = ∏
s∈ℰ

∏
p∈ℛ

∏
o∈ℰ

P (yspo ∣ Θ)  if yspo = 1

1 − P (yspo ∣ Θ)  otherwise
 with P (yspo ∣ Θ) = σ (f (s, p, o ∣ Θ))

yspo
f (s, p, o ∣ Θ)

Θ

Scoring Function - depending on the type of features used by                 we have 
two families of models -  Observable and Latent Feature Models.

f ( ⋅ ∣ Θ)



Observable Feature Models

Uni-Relational Similarity Measures: based on homophily — similar entities are 
likely to be related — and neighbourhood similarity.

• Local: derive similarity between entities from their local neighbourhood                           
(e.g. Common Neighbours, Adamic-Adar Index [Adamic et al. 2003], Preferential Attachment [Barabási et al. 1999], ..)

• Global: derive similarity between entities using the whole graph                                     
(e.g. Katz Index [Katz, 1953], Leicht-Holme-Newman Index [Leicht et al. 2006], PageRank [Brin et al. 1998], ..)

• Quasi-Local: trade-off between computational complexity and predictive accuracy           
(e.g. Local Katz Index [Liben-Nowell et al. 2007], Local Random Walks [Liu et al. 2010], ..)



Observable Feature Models - Rule Mining and ILP
Rule Mining and Inductive Logic Programming methods extract rules via 
mining methods, and use them to infer new links.

• Logic Programming (deductive): from facts and rules, infer new facts (First-Order Logic)

• Inductive Logic Programming (ILP): from correlated facts, infer new rules                          
(e.g. Progol [Muggleton, 1993], Aleph [Srinivasan, 1999], DL-Learner [Lehmann, 2009], FOIL [Quinlan, 1990], ..)

• Rule Mining: AMIE [Galárraga et al. 2015] is orders of magnitude faster than traditional ILP 
methods, and consistent with the Open World Assumption in Knowledge Graphs:
• Partial Completeness Assumption
• Efficient search space exploration via Mining Operators



Observable Feature Models - Path Ranking Algorithm

Path Ranking Algorithm (PRA) uses length-bounded random walks as features 
between entity pairs for predicting a target relation [Lao et al. 2010].

Abe Bart

Homer

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝚛𝚎𝚗𝚝𝙾𝚏

𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏 𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏

Springfield

𝚕𝚒𝚟𝚎𝚜𝙸𝚗 𝚕𝚒𝚟𝚎𝚜𝙸𝚗−1

A PRA model scores a subject-object pair by a 
linear function of their path features:

where      is the set of all length-bounded 
relation paths, and     are parameters estimated 
via L1,L2-regularised logistic regression.

f (s, p, o) = ∑
π∈Πp

P(s → o ∣ π) × θπ,p

Π
θ

Some extensions: Subgraph Features [Gardner et al. 2015], Multi-Task [Wang et al. 2016]



Observable Feature Models are Interpretable

Body ⇒ Head Confidence
𝚑𝚊𝚜𝙽𝚎𝚒𝚐𝚑𝚋𝚘𝚛(X, Y ) ⇒ 𝚑𝚊𝚜𝙽𝚎𝚒𝚐𝚑𝚋𝚘𝚛(Y, X ) 0.99
𝚒𝚜𝙼𝚊𝚛𝚛𝚒𝚎𝚍𝚃𝚘(X, Y ) ⇒ 𝚒𝚜𝙼𝚊𝚛𝚛𝚒𝚎𝚍𝚃𝚘(Y, X ) 0.96

𝚑𝚊𝚜𝙽𝚎𝚒𝚐𝚑𝚋𝚘𝚛(X, Z ) ∧ 𝚑𝚊𝚜𝙽𝚎𝚒𝚐𝚑𝚋𝚘𝚛(Z, Y ) ⇒ 𝚑𝚊𝚜𝙽𝚎𝚒𝚐𝚑𝚋𝚘𝚛(X, Y ) 0.88
𝚒𝚜𝙰𝚏𝚏𝚒𝚕𝚒𝚊𝚝𝚎𝚍𝚃𝚘(X, Y ) ⇒ 𝚙𝚕𝚊𝚢𝚜𝙵𝚘𝚛(Y, X ) 0.87

𝚙𝚕𝚊𝚢𝚜𝙵𝚘𝚛(X, Y ) ⇒ 𝚒𝚜𝙰𝚏𝚏𝚒𝚕𝚒𝚊𝚝𝚎𝚍𝚃𝚘(Y, X ) 0.75
𝚍𝚎𝚊𝚕𝚜𝚆𝚒𝚝𝚑(X, Z ) ∧ 𝚍𝚎𝚊𝚕𝚜𝚆𝚒𝚝𝚑(Z, Y ) ⇒ 𝚍𝚎𝚊𝚕𝚜𝚆𝚒𝚝𝚑(X, Y ) 0.73

𝚒𝚜𝙲𝚘𝚗𝚗𝚎𝚌𝚝𝚎𝚍𝚃𝚘(X, Y ) ⇒ 𝚒𝚜𝙲𝚘𝚗𝚗𝚎𝚌𝚝𝚎𝚍𝚃𝚘(Y, X ) 0.66
𝚍𝚎𝚊𝚕𝚜𝚆𝚒𝚝𝚑(X, Z ) ∧ 𝚒𝚖𝚙𝚘𝚛𝚝𝚜(Z, Y ) ⇒ 𝚒𝚖𝚙𝚘𝚛𝚝𝚜(X, Y ) 0.61

𝚒𝚗𝚏𝚕𝚞𝚎𝚗𝚌𝚎𝚜(Z, X ) ∧ 𝚒𝚜𝙸𝚗𝚝𝚎𝚛𝚎𝚜𝚝𝚎𝚍𝙸𝚗(Z, Y ) ⇒ 𝚒𝚜𝙸𝚗𝚝𝚎𝚛𝚎𝚜𝚝𝚎𝚍𝙸𝚗(X, Y ) 0.53

Rules extracted by AMIE+ [Galárraga et al. 2015] from the YAGO3-10 dataset [Dettmers et al. 2018]



Latent Feature Models
Variables        are conditionally independent given a set of latent features and 
parameters     . Latent means that are not directly observed in the data, and thus 
need to be estimated.

yspo

Θ

es eo

Rp

yspo

o ∈ ℰs ∈ ℰ

p ∈ ℛ

f(s, p, o) = fp(es, eo) {
es, eo ∈ ℝk,
fp : ℝk × ℝk ↦ ℝ

Relationships between entities s and o can be inferred 
from the interactions of their latent features         :es, eo

The latent features inferred by these models can be 
very hard to interpret.



Latent Feature Models
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Latent Feature Models

Washington

Malia Ann 
Obama

Sasha 
Obama

Barack 
Obama

Michelle 
Obama

lives in

parent of

?

P(BO married MO) ∝

fmarried( , )

Learning Representations

ℒ(𝒢 ∣ Θ) = ∑
(s,p,o)∈𝒢

log σ (fp(es, eo))
+ ∑

(s,p,o)∉𝒢

log [1 − σ (fp(es, eo))]



Latent Feature Models - Scoring Functions

Models Scoring Functions Parameters

RESCAL [Nickel et al. 2011]

NTN [Socher et al. 2013]

TransE [Bordes et al. 2013]

DistMult [Yang et al. 2014]

HolE [Nickel et al. 2016]

ComplEx [Trouillon et al. 2016]

ConvE [Dettmers et al. 2017]

− es + rp − eo
2

1,2

⟨es, rp, eo⟩

Re (⟨es, rp, eo⟩)
r⊤

p (ℱ−1 [ℱ[es] ⊙ ℱ[eo]])

f (vec (f ([es; rp] * ω)) W) eo

rp ∈ ℝk

rp ∈ ℝk

rp ∈ ℝk

rp ∈ ℝk, W ∈ ℝc×k

rp ∈ ℂk

u⊤
p f (esW[1…d ]

p + Vp [es
eo] + bp) Wp ∈ ℝk2×d, Vp ∈ ℝ2k×d, bp, up ∈ ℝk

e⊤
s Wpeo Wp ∈ ℝk×k

Relationships between entities are determined by interactions between latent 
features — this yields different choices for the scoring function                         :fp : ℝk × ℝk ↦ ℝ
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Latent Feature Models - Learning
Another core differente among models is the loss function minimised for fitting the 
latent parameters      to the data — let                                                             :Θ

Losses Formulation Models

Quadratic Loss Tensor Factorisation,           
RESCAL (ALS)

Pairwise Loss SE, NTN, TransE, HolE

Cross-Entropy Loss ComplEx

Multiclass Loss
ConvE, ComplEx-N3 

∑
(xspo,yspo)∈𝒟

yspo − fspo
2

2

∑
x+∈𝒟+

∑
x−∈𝒟−

ℒ(x+, x−) e.g.= max {0,γ + fx−
− fx+}

∑
(x,y)∈𝒟

[y log (px) + (1 − y)log (1 − px)]

∑
xspo∈𝒟+

ℒ(pspo,1) + ∑̃
s∈ℰ

ℒ(ps̃po, ys̃po) + ∑̃
o∈ℰ

ℒ(pspõ, yspõ)

fspo = f (xspo ∣ Θ)  and pspo = σ (fspo)

[Dettmers et al. 2017,

Lacroix et al. 2018]



Latent Feature Models - Predictive Accuracy
Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean 
Reciprocal Rank (MRR), Hits@k. In MRR and Hits@k, for each test triple:

• Modify its subject with all the entities in the Knowledge Graph,
• Score all the triple variants, and compute the rank of the original test triple,
• Repeat for the object.

MRR =
1

|𝒯 |

|𝒯|

∑
i=1

1
ranki

, HITS@k =
|{ranki ≤ 10} |

|𝒯 |
From [Lacroix et al. ICML 2018]



Latent Feature Models - Interpreting the Embeddings
Learned relation embeddings — using ComplEx with a pairwise margin-based loss 
— for WordNet (left), DBpedia, and YAGO (right) [Minervini et al. ECML 2017]
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Learned relation embeddings — using ComplEx with a pairwise margin-based loss 
— for WordNet (left), DBpedia, and YAGO (right) [Minervini et al. ECML 2017]



Latent Feature Models - Post Hoc Interpretability
Generate an explanation model by training Bayesian Networks or Association Rules 
on the output of a Latent Feature Model. [Carmona et al. 2015, Peake et al. KDD 2018, Gusmão et al. 2018]



Combining Observable and Latent Feature Models
• Additive Relational Effects (ARE) [Nickel et al. NeurIPS 2014] — combines Observable 

and Latent Features in a single linear model:

• Knowledge Vault [Dong et al. KDD 2014] — combines the prediction of Observable and 
Latent Feature Models via stacking:

• Adversarial Sets [Minervini et al. UAI 2017] — incorporate observable features, in the 
form of First-Order Logic Rules R, in Latent Feature Models:

f ARE
spo = w⊤

LFM,pΘLFM,so + w⊤
OBS,pΘPRA,so

fKV
spo = fFUSION (f OFM

spo , fLFM
spo )

ℒ(Θ ∣ R) = ℒLFM(Θ) + max
𝒮⊆𝒫(ℰ)

ℒRULE(Θ, R)



End-to-End Differentiable Reasoning

Differentiable Architectures
• Can generalise from high-dimensional, 

noisy, ambiguous inputs (e.g. sensory)
• Not interpretable
• Hard to incorporate knowledge
• Propositional fixation [McCarthy, 1988]

Logic Reasoning Based Models
• Can learn from small data
• Issues with high-dimensional, noisy, 

ambiguous inputs (e.g. images)
• Easy to interpret, and can provide 

explanations in the form of reasoning 
steps used to derive a conclusion

We can combine neural networks and symbolic models by re-implementing classic 
reasoning algorithms using end-to-end differentiable (neural) architectures:



Reasoning in a Nutshell — Forward Chaining

Forward Chaining — start with a list of facts, and work 
forward from the antecedent P to the consequent Q iteratively.

q(X) ← p(X)
p(a)
p(b)
p(c)

…



Reasoning in a Nutshell — Forward Chaining

Forward Chaining — start with a list of facts, and work 
forward from the antecedent P to the consequent Q iteratively.

q(X) ← p(X)
p(a)
p(b)
p(c)

…

p(a), q(a)
p(b), q(b)
p(c), q(c)

…



Reasoning in a Nutshell — Backward Chaining

Backward Chaining — start with a list of goals, and work 
backwards from the consequent Q to the antecedent P to see if 
any data supports any of the consequents.

q(X) ← p(X)
q(a)?p(a)

p(b)
p(c)

…

You can see backward chaining 
as a query reformulation strategy.
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Reasoning in a Nutshell — Backward Chaining

Backward Chaining — start with a list of goals, and work 
backwards from the consequent Q to the antecedent P to see if 
any data supports any of the consequents.

q(X) ← p(X)
q(a)?p(a)

p(b)
p(c)

…
p(a)

You can see backward chaining 
as a query reformulation strategy.✓



Differentiable Forward Chaining - ∂ILP [Evans et al. JAIR 2018]

∂ILP uses a differentiable model of forward chaining 
inference:
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∂ILP uses a differentiable model of forward chaining 
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• Weights of the network represent a probability 

distribution over clauses
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∂ILP uses a differentiable model of forward chaining 
inference:
• Weights of the network represent a probability 

distribution over clauses
• A valuation is a vector with values in [0, 1] 

representing how likely it is that each of the 
ground atoms is true

• Forward chaining is implemented by a 
differentiable function that, given a valuation 
vector, produces another by applying rules to it.

• If conclusions do not match the desired ones, the 
error is back-propagated to the weights.

loss

cross 
entropy

predicted 
label

extract

conclusion 
valuation

infer

true label

target atom

clause weightsclausesinitial 
valuation

generate

computed 
value

differentiable
function

non-differentiable
function

parametersinputs

differentiable
path

non-differentiable
path

Legend

program template

convert

languageaxioms



Differentiable Forward Chaining - ∂ILP [Evans et al. JAIR 2018]

∂ILP uses a differentiable model of forward chaining 
inference:
• Weights of the network represent a probability 

distribution over clauses
• A valuation is a vector with values in [0, 1] 

representing how likely it is that each of the 
ground atoms is true

• Forward chaining is implemented by a 
differentiable function that, given a valuation 
vector, produces another by applying rules to it.

• If conclusions do not match the desired ones, the 
error is back-propagated to the weights.

We can extract a readable program.
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Differentiable Forward Chaining - ∂ILP [Evans et al. JAIR 2018]

cycle(X ) ← pred(X, X )
pred(X, Y ) ← edge(X, Y )
pred(X, Y ) ← edge(X, Z ), pred(Z, Y )



Differentiable Forward Chaining - ∂ILP [Evans et al. JAIR 2018]

1 ↦ 1
2 ↦ 2

3 ↦ Fizz
4 ↦ 4

5 ↦ Buzz
6 ↦ Fizz

7 ↦ 7
8 ↦ 8

9 ↦ Fizz
10 ↦ Buzz

fizz(X) ← zero(X)
fizz(X) ← fizz(Y ), pred1(Y, X)
pred1(X, Y ) ← succ(X, Z), pred2(Z, Y )
pred2(X, Y ) ← succ(X, Z), succ(Z, Y )



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]

q(X) ← p(X)
q(a)?p(a)

p(b)
p(c)

…
p(a)

✓

Backward Chaining



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏 (𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏 (𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

✓ ✓✕

q(X) ← p(X)
q(a)?p(a)

p(b)
p(c)

…
p(a)

✓

Backward Chaining BUT there’s a problem..



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏 (𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏 (𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

✓ ✓✓
sim = 1sim = 1sim = 0.9



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]
Knowledge Base:

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y ) ⇐
𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Z ),
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, Y ) .

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏(𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]
Knowledge Base:

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y ) ⇐
𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Z ),
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, Y ) .

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏(𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)

proof score S1



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]
Knowledge Base:

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y ) ⇐
𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Z ),
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, Y ) .

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏(𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)

proof score S1

𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

proof score S2



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]
Knowledge Base:

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y ) ⇐
𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Z ),
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, Y ) .

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏(𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)

proof score S1

𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

proof score S2

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y )
X /𝚊𝚋𝚎 Y /𝚋𝚊𝚛𝚝

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, Z )
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, 𝚋𝚊𝚛𝚝)

Subgoals:

proof score S3



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]
Knowledge Base:

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y ) ⇐
𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Z ),
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, Y ) .

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏(𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)

proof score S1

𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

proof score S2

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y )
X /𝚊𝚋𝚎 Y /𝚋𝚊𝚛𝚝

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, Z )
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, 𝚋𝚊𝚛𝚝)

Subgoals:

proof score S3

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, Z )
Z

proof score S4



Backward Chaining — Differentiable Proving
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]
Knowledge Base:

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y ) ⇐
𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Z ),
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, Y ) .

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏(𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)

proof score S1

𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

proof score S2

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y )
X /𝚊𝚋𝚎 Y /𝚋𝚊𝚛𝚝

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, Z )
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, 𝚋𝚊𝚛𝚝)

Subgoals:

proof score S3

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, Z )
Z

proof score S4

proof score S5

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛) …



Learning Interpretable Rules From Data
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]
Knowledge Base:

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)
θ1(X, Y ) ⇐ θ2(X, Z ), θ3(Z, Y ) .

𝚐𝚛𝚊𝚗𝚍𝙿𝚊𝙾𝚏(𝚊𝚋𝚎, 𝚋𝚊𝚛𝚝)

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛)

proof score S1

𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(𝚑𝚘𝚖𝚎𝚛, 𝚋𝚊𝚛𝚝)

proof score S2

𝚐𝚛𝚊𝚗𝚍𝙵𝚊𝚝𝚑𝚎𝚛𝙾𝚏(X, Y )
X /𝚊𝚋𝚎 Y /𝚋𝚊𝚛𝚝

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, Z )
𝚙𝚊𝚛𝚎𝚗𝚝𝙾𝚏(Z, 𝚋𝚊𝚛𝚝)

Subgoals:

proof score S3

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, Z )
Z

proof score S4

proof score S5

𝚏𝚊𝚝𝚑𝚎𝚛𝙾𝚏(𝚊𝚋𝚎, 𝚑𝚘𝚖𝚎𝚛) …
∑
F∈K

log pKB∖F(F )

− ∑
F̃∼corr(F)

log pKB(F̃ )

Training
Maximise Log-Likelihood:



Differentiable Reasoning



Explainable Neural Link Prediction



Reasoning Over Text

Rule Group p(X, Y) :- q(Y, X) Rules Rule Group p(X, Y) :- q(X, Z), r(Z, Y)

X Y :- Y X

encoder

KB

encoder

Query

AND

containedIn(River 
Thames, UK)    

“London is located in the UK”

“London is standing on the 
River Thames”

“[X] is located in the [Y]”(X, Y) :- 
locatedIn(X, Y)

locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y)

KB Rep. Text Representations

X Y :- Y XX Y :- Y X X Y :- X Z
,

Z YX Y :- X Z
,

Z Y

Recurse

k-NN OR

We can embed facts from the KG and facts from text in a shared 
embedding space, and learn to reason over them jointly:



Reasoning Over Text

We can embed facts from the KG and facts from text in a shared 
embedding space, and learn to reason over them jointly:

[Rocktäschel et al. 2017, Minervini et al. 2018, 
Welbl et al. 2019]



We can embed facts from the KG and facts from text in a shared 
embedding space, and learn to reason over them jointly:

Reasoning Over Text
[Rocktäschel et al. 2017, Minervini et al. 2018, 

Welbl et al. 2019]



Neuro-Symbolic Integration — Recent Advances

• Recursive Reasoning Networks [Hohenecker et al. 2018] — given a OWL RL ontology, 
uses a differentiable model to update the entity and predicate representations.

• Deep ProbLog [Manhaeve et al. NeurIPS 2018] — extends the ProbLog probabilistic logic 
programming language with neural predicates that can be evaluated on e.g. 
sensory data (images, speech).

• Logic Tensor Networks [Serafini et al. 2016, 2017] — fully ground First Order Logic rules.

• AutoEncoder-like Architectures [Campero et al. 2018] — use end-to-end differentiable 
reasoning in the decoder of an autoencoder-like architecture to learn the 
minimal set of facts and rules that govern your domain via backprop.
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