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FAST SOMATIC MUTATION PROFILE SEARCH - THE MOTIVATION

Sequencing will become a common practice in medicine [1-3]

Characterizing cancer patients with somatic mutations is a natural process for cancer
studies because cancer is the result of accumulation of genetic alterations.

Similarity search on mutation profiles can solve various translational bioinformatics
tasks, including prognostics and treatment efficacy predictions for better clinical

decision [4].
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CHALLENGE: SPARSITY AND HETEROGENEITY OF MUTATION DATA

Somatic mutation data are sparse in character, and for complex diseases,
including cancer, mutations are genetically heterogeneous [5-0].
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GO AND ONMF-BASED SOMATIC MUTATION PROFILE

Goal Characteristics of proposed profile
To provide a simple but effective Compact representation of somatic
mutation profile mutation for cancer patients

Method: Enable real-time search
Exploit Gene-Ontology (GO) and Tolerant to heterogeneity
orthogonal non-negative matrix Directness in function interpretation
factorization (ONMF)

High predictive power for clinical
Target data features

Somatic mutation data (from TCGA)
5 different cancer types



OVERVIEW OF THE PROFILE GENERATION AND VALIDATION METHODS

Profile Generation

Validation

Somatic Mutation Profile
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SOMATIC MUTATION PROFILE, S

For each patient, somatic Types of mutation considered:
mutations are represented as a A single-nucleotide base change,
profile of binary mutated states the insertion
on genes. deletion of bases

2352 NEK11 INS Shift_Ins 19 58862932

2002 EGFR DEL Shift_Del 10 52575855 G

2002 TP33 SNP Missense 10 52575855 A

2352 EGFR SNP Missense 3 9229467 T

A062 A2M SNP Silent

N 2352 0
2002 1
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GENE ONTOLOGY (GO)
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GENE-FUNCTION PROFILE, Ggenexco

Each gene is a binary vector of GO
terms

1 if annotated with the term,

O otherwise.

Reducing correlation between GO
terms by using only the most
specific terms

Scores of non-leaf nodes are

propagated to their descendant
nodes until G, converges

Gev1 = Ge X Mgo

where G, is the gene-function profile at
the t-th iteration and My, is an adjacency
matrix
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GO-BASED MUTATION PROFILE, GO-MP

For each patient, GO-based somatic mutation profile is represented by a
weighted sum of gene scores on each GO term.
Multiply Mutation Profile matrix S with Gene-GO Profile matrix.
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ONMF MUTATION PROFILE, ONMF-MP
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PERFORMANCE VALIDATION

Cancer stratification

Associations between the cancer
subtypes and clinical features.

Top-k search

Similarity of clinical profiles to
determine whether the search results
are correct.
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EXPERIMENTAL RESULT

Data set

Somatic mutation data of five tumor types downloaded from TCGA portal; UCEC,
BRCA, OV, LUAD, GBM data

# patients 247 772 441 516 291
# genes 9341 13078 12431 18067 9341
Competitors

Cancer stratification - Network-Based Stratification (NBS). GOS (NMF on GO-MP),
ORGOS (ONMF on GO-MP)

Top-k search - Somatic mutation profile, GO-MP, ONMF-MP



COMPARED METHOD NETWORHK-BASED STRATIFICATION (NBS)

A method to integrate somatic tumor genomes with gene networks
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Network smoothing:
for each patient, project mutations
onto a network and propagate

l

Network clustering:
cluster smoothed (patients x genes)
matrix using network NMF

Repeat N times
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Aggregate consensus matrix
(patient x patient)
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ASSOCIATION WITH PATIENT SURVIVAL

Log-rank Statistic

Survival time (months)
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ASSOCIATION WITH PATIENT SURVIVAL

NBS
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In OV, three survival curves show
similar pattern for the all three
approaches.

In LUAD, NBS produced inaccurate
survival curves in which the min
subtype shows longer survival pattern
than the max subtype.

In GBM data, NBS was successful at
grouping the min survival while
ORGOS was better at grouping the
max survival.



CHI-SQUARE STATISTICS OF SUBTYPES WITH HISTOLOGICAL BASI
FEATURE ON UCEC DATA

Chi-square statistics
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CHI-SQUARE STATISTICS OF SUBTYPES WITH ESTROGEN RECEPTOR
STATUS ON BRCA DATA

Chi-square statistics
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TOP-K SEARCH ON SINGLE FEATURE
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UCEC data; histological type BRCA data; estrogen receptor status




TOP-10 SEARCH ON MULTIPLE FEATURES
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AVERAGE TOP-K SEARCH SPEED
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PROPAGATION OF GO TERM SCORES

! regulation of signal transduction
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Algorithm 1: Identifying significant GO terms
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Data: Initial score vector wp, (GO terins x

Result: A set of signiflicant G0 terms, x°
W = wp
repeat

ser = wr[i] /| P|

if |P| == 1 then
| {'Ulilill'lli.‘;
end

foreach p £ P do
if ¢ = 'x.[p].r then
| w':p]+ = 807
else
| w*[p] = s
end
end

end

until w* does nol change;
return x* = GetSignificantGOterms{w™)

foreach node ¢ thal is updafed al the previous siep do
P = x[i]. Parents(); % An index set of i-th GO term’ ancestors




ANALYSIS OF SUBTYPES ON GO TERMS
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U [ - PI3K cascade is an important pathway that is involved

in proliferation, invasion and migration in cancer [10-12].

“PI3K pathway influence GBM patients survival [13].

—
“Glioblastoma cancer and pancreatic cancer share
network patterns that contain most of the candidate
causative mutations [14].

“Pancreatic stellate cells are responsible for creating a
tumor facilitatory environment that stimulates local
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CONCLUSION

We suggest
Mutation profiles exploiting Gene Ontology and orthogonal NMF to obtain compact
representation of mutation data and allow an efficient similar patient search.
According to the results,
ONMF-MP allows us to efficiently search top-k patients that are clinically similar.

The tumor subtypes identified by using ONMF-MP are more closely associated with
the clinical features than NBS.

The association of the subtypes with clinical feature in UCEC and BRCA data

The association of the subtypes with survival time in OV, LUAD, and GBM data
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