

Unique Origin Unique Future

Outline

1. Introduction

- 2. Collaborative Filtering
- **3.** Content-based Recommendation
- 4. Context-aware Recommendation
- **5.** Other Approaches
- **6.** Concluding Remarks

1. Introduction

- 2. Collaborative Filtering
- **3.** Content-based Recommendation
- 4. Context-aware Recommendation
- **5.** Other Approaches
- 6. Concluding Remarks

Recommender Systems

Frequently Bought Together

This item: Recommender Systems: An Introduction by Dietmar Jannach Hardcover \$54.75

Recommender Systems Handbook by Francesco Ricci Hardcover \$136.45

Algorithms of the Intelligent Web by Haralambos Marmanis Paperback \$25.43

Recommender Systems

- Netflix:
 - 2/3 of the movies watched are recommended

Google News:

Recommendations generate 38% more clickthrough

Amazon:

- 35% sales from recommendations

Choicestream:

 28% of the people would buy more music if they found what they liked

Definition of Recommender Systems

Given

- User profile (usage history, demographics, ...)
- Items (with or without additional information)

Goal

- Relevance scores of unseen items
- List of unseen items

By using a number of technologies

- Information Retrieval: document models, similarity, ranking
- Machine Learning & Data Mining: classification, clustering, regression, probability, association
- Others: user modeling, HCI

Approaches

Collaborative Filtering

- Memory based CF
 - User-based CF, Item-based CF
- Model based CF
 - Dimension reduction, Clustering, Association rules, restricted Boltzmann machine, Probabilistic approach, Other classifiers

Content-based Recommendation

- Content/User modeling & similarity
 - TF-IDF, Cosine similarity
- Context-aware Recommendation
 - Pre-filtering, Post-filtering
 - Contextual modeling
 - Extension of 2D model, Tensor factorization

Approaches

Other Approaches

- Combining Multiple Recommendation Approach
- Combining Multiple Information
 - Hybrid Information Network based CF
 - Collective matrix factorization
- Diversity in Recommendation
- Division of Profiles into Sub-Profiles
- Recommendation for group users

1. Introduction

2. Collaborative Filtering

- 3. Content-based Recommendation
- 4. Context-aware Recommendation
- 5. Other Approaches
- 6. Concluding Remarks

Collaborative Filtering

균관대학교

10

Items

Basic assumption and idea

- Customers who had similar tastes in the past, will have similar tastes in the future
- Implicit or explicit user ratings to items are available

Easy to apply any domain

- Based on big data: commercial e-commerce sites
- Easy to explain: wisdom of the crowd
- Flexible: various algorithms exist
- Example: book, movies, DVDs, ...

Collaborative Filtering

Memory based (k-NN approach)

- User-based CF
- Item-based CF

Model based (User model construction)

- Dimension reduction (Matrix Factorization)
- Clustering
- Association rule mining
- Restricted Boltzmann machine
- Probabilistic models
- Various machine learning approaches

How much target user likes I3?

	I1	I2	I 3	I4	I5
Active	4	3	?	5	4
U1	2	2	2	3	3
U2	3	2	4	5	4
U3	2	3	3	2	5
U4	1	5	1	4	2

Predict the ratings of active user based on the ratings of similar users

User Similarity

$$sim(u_{1}, u_{2}) = \frac{\sum_{i \in I} (r_{u_{1},i} - \overline{r}_{u_{1}}) (r_{u_{2},i} - \overline{r}_{u_{2}})}{\sqrt{\sum_{i \in I} (r_{u_{1},i} - \overline{r}_{u_{1}})^{2}} \sqrt{\sum_{i \in I} (r_{u_{2},i} - \overline{r}_{u_{2}})^{2}}}$$

- $r_{u,i}$: rating of user **u** for item **i** - $\overline{r_u}$: user **u**'s average ratings

	- 11	I2	I 3	I4	15
Active	4	3	?	5	4
U1	2	2	2	3	3
U2	3	2	4	5	4
U3	2	3	3	2	5
U4	1	5	1	4	2

Prediction

$$pred(u,i) = \overline{r}_{u} + \frac{\sum_{v \in U} sim(u,v) \cdot (r_{v,i} - \overline{r}_{v})}{\sum_{v \in U} sim(u,v)}$$

	I1	I2	I3	I4	15	Sim.
Active	4	3	?	5	4	
U1	2	2	2	3	3	0.71
U2	3	2	4	5	4	0.85
U3	2	3	3	2	5	0.24
U4	1	5	1	4	2	-0.22

pred(Target, I3) = 0.43

Some Problems

- Sparsity
 - Large item sets: users purchases are under 1%
 - Few common ratings between two users
 - Reliability of user-user similarity decreases
- Scalability (m = |users|, n = |items|)
 - Large computation for finding NNs
 - Time complexity for computing Pearson O(m²n)
 - Space complexity O(m²) for pre-computing
- Solution
 - Model-based CF

Model-based Collaborative Filtering

Lazy Learning vs Eager Learning

- Lazy learning: User/Item-based collaborative filtering
- Eager learning: Model-based collaborative filtering

Model-based CF

- Build preference model from rating matrix
- Use the models for predictions
- Possibly computationally expensive

															-	
	MI	M2	M3	M4	M5	M6	M7	M8	M9	M10	MII	M12	M13	M14	_	
abnormalities	0	0	0	0	0	0	0	1	0	1	0	0	0	0	-	
age	1	0	0	0	0	0	0	0	0	0	0	1	0	0		model
behavior	0	0	0	0	1	1	0	0	0	0	0	0	0	0		mouer
blood	0	0	0	0	0	0	0	1	0	0	1	0	0	0		
close	0	0	0	0	0	0	1	0	0	0	1	0	0	0		
culture	1	1	0	0	0	0	0	1	1	0	0	0	0	0		K
depressed	1	0	1	1	1	0	0	0	0	0	0	0	0	0	N	
discharge	1	1	0	0	0	1	0	0	0	0	0	0	0	0		
disease	0	0	0	0	0	0	0	0	1	0	1	0	0	0		
fast	0	0	0	0	0	0	0	0	0	1	0	1	1	1		
generation	0	0	0	0	0	0	0	0	1	0	0	0	1	0		
oestrogen	0	0	1	1	0	0	0	0	0	0	0	0	0	0	•	
patients	1	1	0	1	0	0	0	1	0	0	0	0	0	0		
pressure	0	0	0	0	0	0	0	0	0	0	1	0	0	1		
rats	0	0	0	0	0	0	0	0	0	0	0	0	1	1		
respect	0	0	0	0	0	0	0	1	0	0	0	1	0	0		
rise	0	0	0	ī	0	0	0	0	0	0	0	0	0	I		
study	ī	0	ī	0	0	0	0	0	ī	ō	0	ō	0	0		

Unique Origin Unique Future

Model-based Collaborative Filtering

Basic Techniques

- Dimension reduction (Matrix Factorization)
- Clustering
- Association rule mining
- Restricted Boltzmann machine
- Probabilistic models
- Various machine learning approaches

Netflix 100M data

- Possibly 8,500M ratings (500,000 x 17,000)
- But, there are only 100 M non-zero ratings

Methods of dimensionality reduction

- Matrix Factorization
- Clustering
- Projection (PCA...)

500.000 users

Space complexity

- Worst case: O(mn)
- In practice: O(m + n)

Assume some latent factors in user preference

균관대학교

20

Singular Value Decomposition

- Obtain \hat{X} , a low-rank approximation of X
- Purpose
 - To predict ratings by capturing latent relationships
 - To compute neighborhood in a low-dimensional representation

Predict ratings by capturing latent relationships

- User-item matrix : x
- Normalize x by subtracting b from x : y
 - to efficiently capture the interaction effect between users and items

$$b_{u,i} = \mu + b_u + b_i \qquad b_u = \frac{1}{|I_u|} \sum_{i \in I_u} (r_{u,i} - \mu)$$
$$b_i = \frac{1}{|U_i|} \sum_{u \in U_i} (r_{u,i} - b_u - \mu)$$

- Obtain a row-rank approximation of y: \hat{y}
- Predict ratings for item *i* and user *u* as follows $\hat{r}_{u,i} = b_{u,i} + \hat{y}_{u,i}$

Probabilistic Matrix Factorization

- PLSA (Probabilistic Latent Semantic Analysis)

- LDA (Latent Dirichlet Allocation)

Probabilistic Latent Semantic Analysis

Interpreting as probabilities of user-item

$$p(i|u) = \sum_{z} p(i|z)p(z|u)$$

– Decompose the probability matrix \boldsymbol{P} using an EM approach

$$\boldsymbol{P}=\widehat{\boldsymbol{U}}\boldsymbol{\Sigma}\widehat{\boldsymbol{T}}^{T}$$

- Comparison to SVD
 - SVD :minimizing error, decomposition with geometric model
 - PLSA : maximizing the predictive power, decomposition with stochastic model

Collaborative Filtering

Pros

- Requires minimal knowledge engineering efforts
- No need of any internal structure or characteristics
- Cons
 - Requires a large number of reliable ratings
 - Assumes that prior behavior determines current behavior
 - Cold start problems: New user, new items
 - Sparsity problems

- 1. Introduction
- 2. Collaborative Filtering

3. Content-based Recommendation

- 4. Context-aware Recommendation
- 5. Other Approaches
- 6. Concluding Remarks

• What's content?

- Explicit attributes or chracteristics (Eg for a movie)
 - Genre : Action / adventure
 - Feature : Bruce Willis
 - Year : 1995
- Textual content (Eg for a book)
 - Title
 - Description
 - Table of content
- Any features or keywords which can describe items

Basic assumption and idea

- Customers will like similar content which they liked in the past
- Suitable for text-based products (web pages, book)
 - Items are "described" by their features (e.g. keywords)
 - Users are described by the keywords in the items they bought

Characteristic

- Easy to apply to text-based products or products with text description
- Based on match between the content (item keywords) and user keywords
- Many machine learning approaches are applicable
 - Neural Networks, Naive Bayesian, Decision Tree, ...

Content/User Modeling

User Modeling (for documents)

- Usually, bag of words model is adopted

Aa cc dd
aa bb ff
dd dd hh
....)
$$(2, 1, 1, 2, 0, 1, 0, 1, ...)$$

- Some important words can be selected
 - Based on Entropy or TF-IDF
- User Modeling
 - Average of term vectors of documents in user profile

Content-User Matching

Similarity measure based

- Cosine similarity

Advantages of CBR

- No need for data on other users
 - No first-rater problem or sparsity problems
 - Able to recommend new and unpopular items
- Able to recommend to users with unique preference
- Can provide explanations why it is recommended
 - by listing content-features that caused an item to be recommended
- Good to dynamically created items
 - News, email, events, etc.

Disadvantages of CBR

- Not easy to create content model for any products
 - Book, web pages, news articles, music, video

Over-specialization

- Users are recommended with items similar to what they watched
- no serendipity

- 1. Introduction
- 2. Collaborative Filtering
- 3. Content-based Recommendation

4. Context-aware Recommendation

- 5. Other Approaches
- 6. Concluding Remarks

Traditional Recommendations

- Are based on the ratings of user *u* for item *i*
- Cumulate data of (User, Items, Rating)
- Build a relation *R*: Users \times Items \rightarrow Rating, in order to estimate ratings for unseen items of a user
 - Two-dimensional recommendation framework

Extension for Recommendations with Context

- Data: < user, item, rating, context>
- Relation: Users × Items × Context→ Rating
 - Three-dimensional recommendation framework

What context is

Context is any information or conditions that can influence the perception of the usefulness of an item for a user

Additional information

- Except users and items
- Can be used for better recommendations

Example: Which context is helpful for recommending a book?

- For what purpose is the book bought? (Work, leisure, ...)
- When will the book be read? (Weekday, weekend, ...)
- Where will the book be read? (At home, at school, on a plane, ...)

Architectural Models of Context Integration

< Contextual Pre-Filtering > < Contextual Post-Filtering > < Contextual Modeling >

Contextual Pre-Filtering

Steps

- Select the relevant data using given context
- Generate recommendation based on the selected data using traditional recommendation approach

Issues

- How to efficiently extract relevant data
- Exact filtering vs. Generalized filtering

Contextual Post-Filtering

Overview

- Convert into two-dimensional data (drop out the context information)
- Build two models

Steps

- Generate recommendation by the traditional recommendation approach
- Adjust the obtained recommendation using contextual information

Issues

- How to adjust the recommendation
- How to apply generalized context

 i_1, i_2, i_3, \ldots

Contextual Modeling

- Directly incorporating contextual information into the recommendation model
 - Three-dimensional model
 - Rating = f (User, Item, Context)

Issues

- How to efficient build a model
- How to apply generalized context

Contextual Modeling

How to model three-dimensional information

Users \times Items \times Context \rightarrow Rating

- Extension of two-dimensional models
- Tensor factorization (like SVD)

Extension of two-dimensional models

Extension of two-dimensional model

$$pred(u,i,c) = \overline{r}_{u,c} + \frac{\sum_{v \in U, k \in C} sim((u,c),(v,k)) \cdot (r_{v,i,k} - \overline{r}_{v,k})}{\sum_{v \in U, k \in C} sim((u,c),(v,k))}$$

- Traditional user-based collaborative filtering:

$$pred(u,i) = \overline{r}_{u_1} + \frac{\sum_{v \in U} sim(u,v) \cdot (r_{v,i} - \overline{r}_v)}{\sum_{v \in U} sim(u,v)}$$

Tensor Factorization

Also called HOSVD (High Order SVD)

Tensor Factorization

Optimization

Loss function

$$L(F,Y) := \frac{1}{\|S\|_1} \sum_{i,j,k} D_{ijk} l(F_{ijk}, Y_{ijk}) \qquad l(f,y) = |f-y|$$

- Regularization

$$\Omega[U, M, C] := \frac{1}{2} \left[\lambda_U \| U \|_{\text{Frob}}^2 + \lambda_M \| M \|_{\text{Frob}}^2 + \lambda_C \| C \|_{\text{Frob}}^2 \right]$$
$$\Omega[S] := \frac{1}{2} \left[\lambda_S \| S \|_{\text{Frob}}^2 \right]$$

Objective function

 $R[U, M, C, S] := L(F, Y) + \Omega[U, M, C] + \Omega[S]$

Context-aware Recommendation

Pre-filtering

- Simple: using only the ratings in the same context
- Works with large amounts of data
 - Increases sparseness

Post-filtering

- Simple: Averaging ratings under different context
- Takes into account context interactions
 - Computationally expensive

Contextual modeling

- Extension of 2-D model
 - How to extend considering context
- Tensor Factorization
 - Performance, Linear scalability

- 1. Introduction
- 2. Collaborative Filtering
- 3. Content-based Recommendation
- 4. Context-aware Recommendation

5. Other Approaches

6. Concluding Remarks

Combining Multiple Information

- Hybrid Information Network based CF
- Collective matrix factorization

Recommendation for group users

- Group profile based
- Consensus function based

There are many kinds of information

- User-user relation
- User-program relation
- Program-genre/channel/time relations

Why do we use only user-program relation?

Hybrid Information Network based CF

- Evaluate user-user similarity through multiple path
- Recommend based on user-based CF

- Hybrid Information Network based CF
 - Predicted rating

$$r(u, e') = \sum_{P \in P^*} \theta_{u, P} \cdot s(u, e' \mid P)$$

• Predicted ratings given path P

$$s(u, e' | P) = \sum_{e \in I_u} \frac{2 \times W_{u, e} \times |\{p_{e \to e'} : p_{e \to e'} \in P'\}|}{|\{p_{e \to e} : p_{e \to e} \in P'\}| + |\{p_{e' \to e'} : p_{e' \to e'} \in P'\}|}$$

• Normalized weight & weight of path *P* for *u*

$$\theta_{u,P} = \frac{Weight(u \mid P)}{\sum_{Q \in P^*} Weight(u \mid Q)}$$

$$Weight(u | P) = \sum_{e \in I_u} W_{u,e} \cdot s(u, e | P)$$

Collective Matrix Factorization

$$L(X,Y,Z) = \frac{1}{2} \|I_1^{\circ}(A - XY^T)\|_F^2 + \frac{\alpha}{2} \|I_2^{\circ}(B - XZ^T)\|_F^2 + \frac{\beta}{2} (\|X\|_F^2 + \|Y\|_F^2 + \|Z\|_F^2),$$

Group profile-based approach

- If group profile is available
- Treats a group as a single user
- Most existing recommender systems can be adopted easily, but it is difficult to obtain group profiles

Consensus function-based approach

- If single user profile is available but group profile is not
- Imitates decision-making process
- It is easy to apply, but it needs domain knowledge to select consensus function

Group profile-based approach

- Regular recommender systems are applicable to group profiles

- Consensus function-based approach
 - Virtual group is generated through consensus function, regular recommender systems are applied

53

Unique Origin Unique Future

- Consensus Functions
 - Least Misery Strategy

Most Pleasure Strategy

Average Strategy

Procedure of Consensus Function-based Approach

- Consensus-Recommendation
 - It may reflect more of the group preference, or the consensus between group members

- Recommendation-Consensus
 - Recommendation list for the group may reflect more each group member's preference

- 1. Introduction
- 2. Collaborative Filtering
- 3. Content-based Recommendation
- 4. Context-aware Recommendation
- 5. Other Approaches

6. Concluding Remarks

Summary

Recommendation

- Collaborative Filtering
- Content-based Recommendation
- Context-aware Recommendation
- Others...
- RS are fairly new but already grounded on well-proven technology
- However, there are still many open questions and a lot of interesting research to do

Thank you for your attention

Unique Origin Unique Future