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Disclaimer

* As MANY interpretations as research areas (check out work in
Machine Learning vs Reasoning community)

* Not an exhaustive survey! Focus is on some promising approaches

* Massive body of literature (growing in time)

e Multi-disciplinary (Al — all areas, HCI, social sciences)

* Many domain-specific works hard to uncover

* Many papers do not include the keywords explainability/interpretability!




Explanation in Al

Explanation in Al aims to create a suite of techniques that produce more explainable models,

while maintaining a high level of searching, learning, planning, reasoning performance:
optimization, accuracy, precision; and enable human users to understand, appropriately trust,

and effectively manage the emerging generation of Al systems .




Outline




Tutorial Outline (1)

* Explanation in Artificial Intelligence
* Motivation
* Definitions & Properties
* Explanations in Different Al fields
* The Role of Humans
* Evaluation Protocols & Metrics

* Explanation in Machine Learning
* Explanation Taxonomy
* Explanation in Machine Learning

 Break

9:00-10:00

10:00 -11:00

11:00-11:30




Tutorial Outline (2)

* On the Role of Knowledge Graph in Explainable Al
* Knowledge Graphs
* Extending Machine Learning Systems with Knowledge Graphs

 Break

* On the Role of Reasoning in Explainable Al
* Relational Learning
* On Combining Neural Networks with Logic Programming

* Break
* Industrial Applications of XAl
e Conclusion + Q&A

11:30-12:30
12:30-13:30
13:30 - 15:30
15:30-16:00
16:00-17:00
17:00 - 18:00




Motivation
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Critical Systems










Markets We Serve (Critical Systems)

Trusted Partner For A Safer World




But not Only
Critical Systems




OP-ED CONTRIBUTOR

COMPAS recidivism black bias B T i i

' DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest ? |
without violence ’

Subsequent Offenses

3 drug possessions Subsequent Offenses

: None
LOW RISK 3 HeHRISK 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.




Motivation (2)

Finance:

2 Credit scoring, loan approval

2 Insurance quotes

The Big Read Artificial intelligence

Insurance: Robots learn the
business of covering risk

Artificial intelligence could revolutionise the industry but may also allow
clients to calculate if they need protection

' f in N Save

Oliver Ralph MAY 16, 2017 D 24

https://www.ft.com/content/e07cee0c-3949-11e7-821a-6027b8a20f23

= FICO

CPMMUNITY

1able Machine Learning Challer

community.fico.com/s/explainable-machine-learning-challenge




Stanford

MEDICINE | NewsCenter

Motivation (3)

(el B
Researchers say use of artificial intelligence in medicine raises
Healthcare ethical questions
> Applymg ML methods in medical care In a perspective piece, Stanford researchers discuss the ethical implications of using
1S problematic, machine-learning tools in making health care decisions for patients.
> Al as 3rd‘pa rty actor in physicia Nn- Patricia Hannon ,https://med.stanford.edu/news/all-news/2018/03/researchers-say-use-of-ai-in-medicine-

raises-ethical-questions.html

patient relationship

2 Responsibility, confidentiality?
Intelligible Models for HealthCare: Predicting Pneumonia

2 Learning must be done with available Risk and Hospital 30-day Readmission

data.
Rich Caruana Yin Lou Johannes Gehrke
Microsoft Research LinkedIn Corporation ) Microsoft
rcaruana@microsoft.com ylou@linkedin.com johannes@microsoft.com
. Paul Koch Marc Sturm Noémie Elhadad
2 Must validate models before use. Microsoft Research NewYork-Presbyterian Hospital Columbia University
paulkoch@microsoft.com mas9161@nyp.org  noemie.elhadad@columbia.edu

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, Noemie Elhadad: Intelligible Models
for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission. KDD 2015: 1721-1730




Motivation (4)

Human Resources — Talent Acquisition

» Discriminative Job ’ , o -

Screening Software
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White residents Black residents

Same-day
delivery
area

Motivation (5)

ssidents Black res.

Commercial:

|
Same-day s P W g el
delivery — 2 5 ' Boston
. oy =l
Americans live in ZIP codes L ents Black residents ﬂ:’;t.ﬁ‘.?a
where Amazon offers_ Prime N P 38,468
Free Same-Day Delivery | fg;%a??& Same-day .
. elivery area D0

SanFran.
» = Eligible ZIP codes

Bayarea
4,044 007
t Fresnoarea | Louisvill
| 910,28¢ {4 1

1,374505 |

Nashville
1,316,372

Los Angeles area *
13,968,496

b' Phoenix
¥ | 2,886,340

No Amazon free same-day delivery > 7
for restricted minority neighborhoods Tl

TampaBayarea
1,671,604

Source: Bloomberg analyis of data from Amazon.com
and the American Community Survey




Industry Push
for Explanation




Call for Explanation (1)

Lipton, Zachary C. "The mythos of model interpretability. Int. Conf." Machine
Learning: Workshop on Human Interpretability in Machine Learning. 2016.

¢ User ACCE pta nce & TFUSt Weld, D., and Gagan Bansal. "The challenge of crafting

intelligible intelligence." Communications of ACM (2018).

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":
Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144

* Legal

* Conformance to ethical sta ndardS, fairness Wachter, Sandra, Brent Mittelstadt, and Luciano Floridi. "Why a right to

: : explanation of automated decision-making does not exist in the general data
[}
nght to be Informed protection regulation." International Data Privacy Law 7.2 (2017): 76-99.

* Contestable decisions Goodman, Bryce, and Seth Flaxman. "European Union regulations on algorithmic
decision-making and a" right to explanation"." arXiv preprint arXiv:1606.08813 (2016).

o .
Explanato ry Debugglng Kulesza, Todd, et al. "Principles of explanatory debugging to personalize interactive machine

° FlaWEd pe rformance metrics learning." Proceedings of the 20th international conference on intelligent user interfaces. ACM, 2015.
° |nadeq uate featu res Weld, D., and Gagan Bansal. "The challenge of crafting intelligible intelligence."

. ) ) ] Communications of ACM (2018).
* Distributional drift

Lipton, Zachary C. "The mythos of model interpretability. Int. Conf." Machine

® I ncrease I nSightfu | ness |nf0rmativeness Learning: Workshop on Human Interpretability in Machine Learning. 2016.

* Uncove ring causa | |ty Judea Pearl: Causal Inference. NIPS Causality: Objectives and Assessment 2010: 39-58




Call for Explanation (2)

Foundor and Executive Chalrman, World Economic Forum.

7~
= UMAN +

Reimagining Work in the Age of Al
&
. . PAULR . DAUGHERTY

SSSSSSSSSSSS

* Critical systems / Decisive moments

 Human factor:

* Human decision-making affected by greed, prejudice, fatigue, poor
scalability.

* Bias

* Algorithmic decision-making on the rise.
* More objective than humans?
* Potentially discriminative
* Opaque
* Information and power asymmetry

* High-stakes scenarios = ethical problems!

[Lepri et al. 2018]

THALES




Where is the
Impact?




Trustable Al and eXplainable Al: a Reality Need

* The need for explainable Al rises with the potential cost of poor decisions

Most prominent successes
of Al to date

COST OF POOR DECISIONS

A
Industrial / Military Enterprise
Quality Incident
Cyber Threat Industrial Inspection , Investigation
Detection Medical
Contr0|s ] ) Dlagn03|s
Jet Engine Project Risk Fraud
Predictive Monitoring Detection
Maintenance Credit Risk Case Load
Profiling Processing
Self-Driving . . Auditing
Vehicles Fl'ght,Tr?Jec.tory Product Production
Optimization Pricing Scheduling

Consumer Professional
Machine Speech

Translation Recognition Fashion Medical Image
Face Recommendation Interpretation
Recognition
Book J Music Automated
‘ecommendation Recommendation . Trading .
: entor ata
Sugrézgﬂgns Recommendation Labeling
Search Result Spam Mail . .
. AT Fitness Compliance
Ranking Filtering Coaching Monitoring
Ad Placement
Source: Accenture HUMAN PARTICIPATION

Source: Accenture Point of View. Understanding Machines: Explainable Al. Freddy Lecue, Dadong Wan

Most impactful
successes
of Al to come




XAl in a
Nutshell




Today

* Why did you do that?

=WE” -8 _
EHEDE. This is an * Why not something else?
smil VBN Learning obstacle on ! « When do you succeed?
=s==g Process rail train * When do you fail?
ME<sT120r * When can | trust you?
bERESsEe « How do | correct an error?
Training Learned Output User with
Data Function a Task
Tomorrow
* | understand why
. . Obstacle on « | understand why not
New obbe fbé rail train * | know when you'll succeed
Learning l}“ ““\ * Ob_St"‘Ct'o“ * | know when you'll fail
Process f080 A7 27 |covering full * | know when to trust you
ALEEFEEE fwidth « | know why you erred
Training EXxplainable Explanation User with
Data Model Interface a Task

Source: hitps://WWw.cc.gatech.edu/~alanwags/DLAIZ016/(Gunning]%20NCAI-16%20D LA 20W 5.paT



https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf

How to Explain? Accuracy vs. Explanability

Learning S Interpretability
Explainability
A >
Neural Net
GAN CNN
* Challenges: . Ensemble Non-Linear
* Supervised RNN Method functions
* Unsupervised learning
XGB
e A h: Random Decision
pproachn: - Forest Tree
* Representation Learning © Statistical
* Stochastic selection > Model .
S Polynomial
* Output: raphical Model functions
* Correlation
* No causation
Quasi-Linear

Linear .
Model functions




XAl Objective

Supporting
Industrialization of Al
at Scale




Explainability by Design for Al Products

( Model Debugging
Model Visualization

Model Diagnostics W /‘
Root Cause Analytics

( Model Evaluation
Compliance Testing
(. !
L X

<
Performance monitorin . S
) L g [ |||I Monitor }- -=-
Fairness monitoring
J

\ (
Deo| Model Launch Signoff
X <> Deploy Model Release Mgmt

{ 5 A/B Test
[ Model Comparison ‘*
Cohort Analysis ,
J @ Predict JEprainabIe Decisions
L AP| Support

KDD 2019 Tutorial on Explainable Al in Industry - 5https://sites.google.com/view/kdd19-explainable-ai-tutorial



XAl Definitions

Explanation vs.
Interpretability




Oxtord Dictionary ot English
explanation | skspla'nezf(a)n |

noun

a statement or account that makes something clear: the birth rate is central to any explanation of
population trends.

interpret | mn'‘tarprrt |

verb (interprets, interpreting, interpreted) /with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.




Transparent Design vs Post-hoc Explanation

Black-box System

Transparent design reveals how a Ej_. 5
model functions.

Input Data

v
A o)

"
Interpretability ~ Transparent System

Post-hoc Explanation explains Why a Ej_,i — 3
black-box model behaved that \,

Way_ Input Data 7

Brent D. Mittelstadt, Chris Russell, Sandra Wachter: Explaining Explanations in Al. CoRR abs/1811.01439 (2018) Explanation Sub-system




So, What is an Explanation?

* No formal, technical, agreed upon definition!
 Comprehensive philosophical overview out of scope of the tutorial [Mmiller 2017]

° NOt Ilmlted tO maChIne learnlng! [Lipton 2016, Tomsett et al. 2018, Rudin 2018]
Black-box
Al System
<
N— ~
. - Yy
N— .
\ Explanation
Input Data

Explanation Sub-system




Examples

Heat maps Cop.ies of Algorithm 1
Prototypes est 1mage Words that A1 considers important: Predicted:
Test Image = \, i,
GOD . Atheism
mean Prediction correct:
anyone J
this
Koresh
through
Document

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

[Ribeiro et al. 2016]

[Chen and Rudin 2018]




What About Interpretability?

* Interpretability as Multi-Faceted Concept

* Interpretability is an ill-defined term!
* Not a monolithic concept

Black-box System

\/ *,
Input Data R

Interpretability. _Transparent System

Lipton, Zachary C. "The mythos of model interpretability. Int. Conf." Machine
Learning: Workshop on Human Interpretability in Machine Learning. 2016.




Levels of Model Transparency
Simulatability

Understanding of the functioning of the model Transparent model
* Can a human easily predict outputs?
* Can a human examine the model all at once?

Decomposability

Understanding at the level of single components (e.g.
parameters)

Transparent Model Components

Algorithmic Transparency

Transparent Training Algorithm
Understanding at the level of training algorithm

[Lipton 2016, Lepri et al. 2017, Mittelstadt et al. 2018, Weld and Bansal 2018]




Interpretability Goes Beyond the Model

Data collection

Features —

Simulatability

9o
.‘-‘

Stakeholders

Decomposability

Algorithmic
Transparency

y

g_ Performance Metric

Scenario, Task




Desire for Explainable Al Must be Justified

Interpretability comes at cost: Trade-off interpretability/predictive power

Consequences --No-big-eonsequences-for--—
on humans " unacceptable results e
Rudin, Cynthia. "Please Stop Expléining Black Box Models for High Stakes Decisions." arXiv ) ‘ o
preprint arXiv:1811.10154 (2018). High-stakes decisions
Movie remneeanneneea Credit scoring
recommenders |
Healthcare Criminal Justice
Ad servers
‘ >
Explainable Al Requirements
Completeness Incomplete problem formalization
of Problem 3 .
lizati 1 » Safety: cannot entirely test for safety
Formalization Sufficiently well-studied

) . e Ethics: Notion of fairness too abstract to be encoded
and validated in real

applications

Weld, D., and Gagan Bansal. "The challenge of crafting Lipton, Zachary C. "The mythos of model
intelligible intelligence." Communications of ACM (2018). interpretability. Int. Conf." Machine
Freitas, Alex A. "Comprehensible classification models: a position Doshi-Velez, Finale, and Been Kim. "Towards a rigorous science of Learning: Workshop on Human

paper." ACM SIGKDD explorations newsletter 15.1 (2014): 1-10. interpretable machine learning." arXiv preprint arXiv:1702.08608 (2017). Interpretability in Machine Learning. 2016.




High-Stakes Scenarios Deserve Transparent Models

* Post-hoc explanations can be unreliable
* Design white-box, interpretable models straight away!

* (Or retro-fit approximate but interpretable models over complex
ones)

* Problem: with thousands+ features DNNs perform better: post-hoc
explanation the only way (?)

Rudin, Cynthia. "Please Stop Explaining Black Box Models for High Stakes Decisions." arXiv preprint arXiv:1811.10154 (2018).

Wachter, Sandra, Brent Mittelstadt, and Luciano Floridi. "Why a right to explanation of automated decision-making
does not exist in the general data protection regulation." International Data Privacy Law 7.2 (2017): 76-99.




On Role of Data
In XAl




Interpretable Data for Interpretable Models

Table of baby-name data
(baby-2010.csv)

Field
name rank gender year - hames
Jacob 1 bo 2010

l ~~‘- One row

Isabella 1 girl 2010 (4 fields)
Ethan 2 boy 2010
Sophia 2 girl 2010
Michael 3 boy 2010

] ] | ]

L] n .

: 2000 rows : :

. all told . .

Tabular




XAl Properties




(Some) Desired Properties of Explainable Al Systems (1)

* Informativeness: to which extend the model / prediction can be of use

* Interpretability (or comprehensibility): to which extent the model and/or
its predictions are human understandable. Is measured with the complexity

of the model.

* Fidelity: to which extent the model imitate a black-box predictor.

* Accuracy: to which extent the model predicts unseen instances.

Alex A. Freitas. 2014. Comprehensible classification models: A position Rudin, Cynthia. "Please Stop Explaining Black Box Models for
paper. ACM SIGKDD Explor. Newslett. High Stakes Decisions." arXiv preprint arXiv:1811.10154 (2018).

Doshi-Velez, Finale, and Been Kim. "Towards a rigorous science of
interpretable machine learning." arXiv preprint arXiv:1702.08608 (2017).




(Some) Desired Properties of Explainable Al Systems (2)

Fairness: the model guarantees the protection of groups against
discrimination.

Privacy: the model does not reveal sensitive information about people.

Respect Monotonicity: the increase of the values of an attribute either
increase or decrease in a monotonic way the probability of a record of
being member of a class.

Usability: an interactive and queryable explanation is more usable than
a textual and fixed explanation.

* Low cognitive load: explanation should easy to understand

Andrea Romei and Salvatore Ruggieri. 2014. A multidisciplinary survey on discrimination analysis. Knowl. Eng.

Yousra Abdul Alsahib S. Aldeen, Mazleena Salleh, and Mohammad Abdur Razzaque. 2015. A comprehensive review on privacy preserving data
mining. SpringerPlus .

Alex A. Freitas. 2014. Comprehensible classification models: A position paper. ACM SIGKDD Explor. Newslett.




(Some) Desired Properties of Explainable Al Systems (3)

* Reliability and Robustness: the interpretable model should maintain high
levels of performance independently from small variations of the parameters
or of the input data.

* Non-misleading: the interpretation sticks to the models, and do not hallucinate
on behavior

e Causality: controlled changes in the input due to a perturbation should affect
the model behavior.

* Scalability: the interpretable model should be able to scale to large input data
with large input spaces.

* Generality: the model should not require special training or restrictions.

* Interactivity /Conversational: explanation should be refined based on user
profile, preference and experience

Weld, D., and Gagan Bansal. "The challenge of crafting Mittelstadt, Brent, Chris Russell, and Sandra Wachter. "Explaining
intelligible intelligence." Communications of ACM (2018). explanations in AL" arXiv preprint arXiv:1811.01439 (2018).




Explanation as System-Human Conversation

» H: Why? H: (Hmm. Seems like it might H: What happens if the
! C: See below: be just recognizing anemone background
- texture!) Which training anemones are f
examples are most influential removed? E.g., Q
to the prediction?
| C: These ones:
ML Classifier ' C: I still predict
‘ Green regions argue FISH. because
for FISH, while RED of these green
C: I predict FISH pushes towards DOG. ‘

superpixels:

There's more green.

- Humans may have follow-up questions

- Explanations cannot answer all users’ concerns

Weld, D., and Gagan Bansal. "The challenge of crafting
intelligible intelligence." Communications of ACM (2018).




What about the
Users?




Role-based Interpretability
“Isthesystem-interpretable?” =2 “To whom is the system interpretable?”

No Universally Interpretable Model!

Creators

Examiners
* End users “Am | being treated fairly?” 8 g
“Can | contest the decision?” ,,/'
“What could | do differently to get a —4 4.
positive outcome?” .
Mach.lne 8_.8—&
* Engineers, data scientists: “Is my system working retons — = =
as de5|gned?” . ’ subjects
. |
* Regulators “ Is it compliant?” !
v

e C-suite [Tomsett et al. 18]

Data-subjects

An ideal explainer should model the user background.

[Tomsett et al. 2018, Weld and Bansal 2018, Poursabzi-Sangdeh 2018, Mittelstadt et al. 2019]

27 January 2019 AAAI 2019, Tutorial on Explainable Al pPS://Xaltutoria Ll



Designing Explanations is Task-Related

* Interpretability is always scenario-dependent!
What does interpretability mean in a specific context? Ask the experts!

 What is the ultimate goal of the explanation in that specific context,
for that specific task?

* How incomplete is the problem formulation?
* Time constraints
* Which user expertise?

Lipton, Zachary C. "The mythos of model interpretability. Int. Conf." Machine Learning: Workshop on Human Interpretability in Machine Learning. 2016.

Doshi-Velez, Finale, and Been Kim. "Towards a rigorous science of interpretable machine learning." arXiv preprint arXiv:1702.08608 (2017).

Rudin, Cynthia. "Please Stop Explaining Black Box Models for High Stakes Decisions." arXiv preprint arXiv:1811.10154 (2018).

psS.//Xaitutoria gl




What about the
Evaluation?




Evaluation: Interpretability as Latent Property

* Not directly measurable!

* Rely instead on measurable outcomes:
* Any useful to individuals?
e Can user estimate what a model will predict?
* How much do humans follow predictions?
 How well can people detect a mistake?

* No established benchmarks

* How to rank interpretable models? Different degrees of a

interpretability?

LA
Interpretability

27 January 2019 AAAI 2019, Tutorial on Explainable Al |iEEpS:77xa|Equr|aIZUI9.g|EI|



Evaluation Approaches

| Application-grounded Evaluation

Humans Tasks

Real |
i Humans § §

More v | | . eI x { —rw
Specific Human- grounded Evaluation || |
d Humans '
an |

S S S U S O US SUUr SO SIS G SO S PP SP I PP S-S SO Pt P e

Costly . - No Real Proxy
Functionally-grounded Evaluation Humans Tasks

[Doshi-Velez and Kim 2017]

27 January 2019 AAAI 2019, Tutorial on Explainable Al ps://Xaltutoria 8l




Human-Independent Metrics: Size

* Size is over-simplistic [Freitas 14]

* E.g.: # nodes in a decision tree, size of a local explanation

 Humans can handle at most 72 symbols [Miller1956, Rudin2018]

 Size does not capture semantics of the model

* Extreme simplicity insufficient! e.g. medical experts and larger models, [Freitas 2014]
What does too large mean?

[Doshi-Velez and Kim 2017, Poursabzi-Sangdeh 18]

27 January 2019 AAAI 2019, Tutorial on Explainable Al pPS://Xaltutoria Ll



Human-based Evaluation is Essential

Evaluation criteria for Explanations [miller, 2017]
* Truth & probability
e Usefulness, relevance
e Coherence with prior belief
* Generalization

Cognitive chunks = basic explanation units (for different explanation needs)
* Which basic units for explanations?
* How many?
* How to compose them?
 Uncertainty & end users?

[Doshi-Velez and Kim 2017, Poursabzi-Sangdeh 18]

psS.//Xaitutoria gl



Human-based Evaluation for Feature Attribution-based Approaches

Have humans review attributions and/or compare them to (human provided)
groundtruth on “feature importance”

Pros:
e Helps assess if attributions are human-intelligible

e Helps increase trust in the attribution method

Cons:
e Attributions may appear incorrect because model reasons differently

e Confirmation bias

KDD 2019 Tutorial on Explainable Al in Industry - 5https://sites.google.com/view/kdd19-explainable-ai-tutorial



Perturbation-based Evaluation for Feature Attribution-based Approaches
Perturb top-k features by attribution and observe change in prediction
e Higher the change, better the method
e Perturbation may amount to replacing the feature with a random value

e Samek et al. formalize this using a metric: Area over perturbation curve
o Plot the prediction for input with top-k features perturbed as a function of k

o Take the area over this curve

A

Prediction for Artr%ta %Vetr :
perturbed inputs perturbatio
curve

Drop in prediction
when top 40 features
are perturbed

A\

10 20 30 40 50 60 Numberof
perturbed features

KDD 2019 Tutorial on Explainable Al in Industry - 5https://sites.google.com/view/kdd19-explainable-ai-tutorial



XAl: One Objective, Many Metrics

Comprehensibility Succinctness Actionability Reusability Accuracy

How much effort How concise and What can one Could the How accurate and
for correct human compact is the action, do with the explanation be precise is the
interpretation? explanation? explanation? personalized? explanation?

Completeness

Is the explanation
complete, partial,
restricted?

Source: Accenture Point of View. Unaersfanalng Machines: Explalnable Al. Freddy Lecue, Dadong Wan



Open Challenges

* More formal studies on interpretability

* Rigorous, agreed upon evaluation protocols

* More work on transparent design

* Human involvement (e.g. better interactive, “social” explanations) [Miller 2017]
* Define industry standards (e.g. Al Service Factsheet [Hind et al. 2018)]

* Improve existing legislation
* “Right to explanation” vs “right to be informed” [wachter et al. 2017]

* Legislation & Explanations: How accurate ? How complete? How faithful to
the model? [Rudin 2018]

psS.//Xaitutoria gl




tl:dr

* Explanations and interpretability are required for better human trust,
system debug, and legal compliance.

* No monolithic, agreed upon definition of Explainable Al
* Adoption spans multiple Al fields

* Explainability, interpretability come at a cost

* Design with humans and task in mind

* Human-based evaluation is essential

Attps.//XaitutorialZ019.gith






XAl: One Objective, , Many Definitions,




XAl: One Objective, , Many Definitions,

How to summarize the
reasons (motivation,
justification, understanding

for an Al system behavior,
and explain the causes of
their decisions?

Planning

Robotics




XAl: One Objective, , Many Definitions,

How to summarize the
reasons (motivation,

Dependency Feature Surrogate

Plot Importance - :
: : justification, understanding
'H tif : .
flat® | e @  for an Al system behavior,
B i T - 5
e and explain the causes of
i \‘ h— O their decisions?

e T )

0
[ of {SOL < 27.5;

il :

:Er E bad good

i o ot o o :

03 04 05 06 07
Relalive Feature Importance

hich features are responsible of
classification?

Planning

Robotics




XAl: One Objective, , Many Definitions, proa

Dependency Feature Surrogate o R e
| [ # #
Plot Importance Model s el s
i Wogo || s || TN

Tor{TO<0.
ROE <

Wheaten
Terrier

¥os (SOL < 213N
TA < 3165570}

07 08 08 1

3 04
Relalive Feature Importance

(©) Semantic Segmentation  (d) Aleatoric Uncertsinty  (e) Epistemic Uncertainty

(@) Input Image: (®) Ground Truth

Uncertainty Map




XAl: One Objective,

Dependency
Plot

Feature
Importance

o7 08 09

03 04
Relalive Feature Importance

Surrogate
Model

Tor{TO<0.
ROE <

¥os (SOL < 213N
TA < 3165570}

, Many Definitions,

Strategy
Summarization

Twant 0 eat

pancakes.

( The
pancake m

- \is reacy
Twantto Twantto

o bake
pancake pancakes.

Al ingredens
aein (fe trying
> pans
e

wartto | [71heat
the the

sipt |[01pa
butterin
| maresenss | |ingpan || e tyng

K pon

themixin

Saliency Map

Integrated  Gradient Eage
Guided  Guided Integrated Gradients @ Detostor

Gradient P GradCAM Input

Original
Image

: q o 0. g % -
Junco . =» ®» o aw .
Bird =4 Wpe | Yeed et

o
Wheaten Wy
Terrier 3 g

tvantso | [T 10
| e

pancake || pancake

on a plate

(@) Aleatoric Uncertainty  (¢) Epistemic Uncertainty

(@) Input Image: (®) Ground Truth (©) Semantic Segmentation

Uncertainty Map




XAl: One Objective, , Many Definitions, proa

Strategy mograted Gradiont ¢

Guided Guided  Integrated Gradients In;ut Detector

Dependency Feature Surrogate Summarization Orgnal g imt  Suided
e | .l | L # %
Plot Importance Model === - | o n i - 53

T have cotected
a1 necessares,

Corn

Tor{TO<0.
ROE <

Twantto
maxe.

&
5
=
i
A
L

Wheaten
Terrier
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2

3
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{8
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Overview of explanation in different Al fields (1)

* Game Theory
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-
4777
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017: 4768-
4777

L-Shapley and C-Shapley (with graph structure)

Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan: L-Shapley and C-
Shapley: Efficient Model Interpretation for Structured Data. ICLR 2019
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Overview of explanation in different Al fields (2)

e Search and Constraint Satisfaction

If A+1 then NEW Conflicts
onXandY

VANN AN ANNAN

Conflicts resolution

Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for
Over-Constrained Problems. AAAI 2007: 323-328

Robustness Computation

Hebrard, E., Hnich, B., & Walsh, T. (2004, July). Robust solutions for constraint satisfaction and
optimization. In ECAI (Vol. 16, p. 186).
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Conflicts resolution

Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for
Over-Constrained Problems. AAAI 2007: 323-328

Constraints relaxation

. Ulrich Junker: QUICKXPLAIN: Preferred Explanations and
RObUStness ComPUtatlon Relaxations for Over-Constrained Problems. AAAI 2004:
167-172
Hebrard, E., Hnich, B., & Walsh, T. (2004, July). Robust solutions for constraint satisfaction and

optimization. In ECAI (Vol. 16, p. 186).




Overview of explanation in different Al fields (3)

* Knowledge Representation and Reasoning

Ref F o :':C[:) :r_cé — g 1. (at-least 3 grape) == (at-least 2 grape) Atlst
Trans Fo— g 2. (and (at-least 3 grape) (prim GOOD WINE))
. E oazs Fo—op = (at-least 2 grape) . AndL,1
1 F c{a/B] = D{a/B} 3. (prim GOOD WINE) == (prim WINE) Prim
b __ ercER 4. (and (a.ii-least 3 grape) (prim GOOD WINE))
F (prim EE) = (prim FF) = Eprlm WINE) AndL,3
_ 5. A = (and
THING F ¢ == THING (at-least 3 grape) (prim GOOD WINE)) Told
AvdR Fc=—p Fc=— (and em 6. A == (prim WINE) Eq,4,5
F¢=(and D EB) 7. (prim WINE) = (and (prim WINE)) AndEq
Andl Fc—e=r 8. A == (and (prim WINE)) Eq,7,6
F(and .c..)=& 9. A == (at-least 2 grape) Eq,5,2
Al - Fec=>p 10. A = (and (at-least 2 grape) (prim WINE)) AndR,9,8
(all p ¢) = (all p D)
n>m
AtLst F(at-least n p) = (at-least mp)
AndEq FC=(and C)
AtLs0 F (at — least 0 p) = THING
All-thing b (all p THING) = THING
Alland [land(allp C)H(allp D). )= 4 = (and (at-least 3 grape) (prim GOOD WINE))
(and (all p (and C D)) ...)

Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)
1995: 816-821
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F(at-least n p) = (at-least mp)
AndEq FC=(and C)
AtLs0 F (at — least 0 p) = THING
All-thing b (all p THING) = THING
Alland [land(allp C)H(allp D). )= 4 = (and (at-least 3 grape) (prim GOOD WINE))
(and (all p (and C D)) ...)

Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)
1995: 816-821




Overview of explanation in different Al fields (3)

0.0001

* Knowledge Representation and Reasoning (o () e e

P(alarm|=fire A =tampering)

) P(leaving|alarm) 0.88
AL _n_ . P(leaving|-alarm) 0.001
‘iaimv [ smokey P(report|leaving) 0.75
7 ) P(report|-leaving) = 0.0l
Ref Eo :':C[:) :r_(é — & 1. (at-least 3 grape) == (at-least 2 grape) AtLst o
Trans o ,_:? = 2. {and (at_least 3 grape) (prim GOOD WINE)) l::leavinrg" disjoint([fire(yes): 0.01, fire(no) : 0.99)).
o Fo—s = (at-least 2 grape) . AndL,1 ‘ ] smoke(Sm) « fire(Fi) A csmoke(Sm, Fi).
Eq ‘?Z{E/B} _——>CD{A/B]§}) 3. (p[‘lm GOOD WINE) == ('p[‘lm WINE) Prim ‘ I disjoint| [1'_,\'711::}.'1 (yes, yes): 0.9 cosmoke(no, yes) . ll.l] ).
Prim FFCEE 4. (and (aji.leaSt 3 grape) (prlm GOOD WINE)) I“report_‘/} disjoint([cesmoke(yes, no): 0.01, ccsmoke(no no): 0.99]).
F (prim EE) = (prim FF) = Eprlm WINE) AndL,3
5 A =(and
THING F C == THING .
at-least 3 grape) (prim GOOD WINE Told . . . .
v Fo—o bo—andem g et S B LR Abduction Reasoning (in Bayesian
F¢=(and D EB) 7. (prim WINE) = (and (prim WINE)) AndEq N t k
Andl Fc—e=r 8. A == (and (prim WINE)) Eq,7,6 etwor )
F(and .c..)=& 9. A == (at-least 2 grape) Eq,5,2
Al e o= 10. 4 = (and (at-least 2 grape) (prim WINE)) AndR,9,8 David Poole: Probabilistic Horn Abduction and Bayesian
Al st 1>m Networks. Artif. Intell. 64(1): 81-129 (1993)
’ F(at-least n p) = (at-least mp)
AndEq FC=(and C)
AtLs0 F (at — least 0 p) = THING
All-thing F (all p THING) = THING : detected
Alland [land(allp C)H(allp D). )= 4 = (and (at-least 3 grape) (prim GOOD WINE)) > ' nogault |
(and (all p (and C D)) ...)
Explaining Reasoning (through Justification) e.g., Subsumption
open
Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1) DlagnOSIS Inference
1995: 816-821 Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-Based

Diagnosis of Discrete Event Systems: Theory and Practice. KR
2012




Overview of explanation in different Al fields (4)

* Multi-agent Systems

MAS INFRASTRUCTURE

INDIVIDUAL AGENT INFRASTRUCTURE

MAS INTEROPERATION
Translation Services Interoperation Services

INTEROPERATION
Interoperation Modules

CAPABILITY TO AGENT MAPPING
Middle Agents

CAPABILITY TO AGENT MAPPING
Middle Agents Components

NAME TO LOCATION MAPPING
ANS

NAME TO LOCATION MAPPING
ANS Component

SECURITY
Certificate Authority ~ Cryptographic Services

SECURITY
Security Module private/public Keys

PERFORMANCE SERVICES
MAS Monitoring Reputation Services

PERFORMANCE SERVICES
Performance Services Modules

MULTIAGENT MANAGEMENT SERVICES
Logging, Acivity Visualization, Launching

MANAGEMENT SERVICES
Logging and Visualization Components

ACL INFRASTRUCTURE
Public Ontology Protocols Servers

ACL INFRASTRUCTURE
ACL Parser Private Ontology  Protocol Engine

COMMUNICATION INFRASTRUCTURE
Discovery Message Transfer

COMMUNICATION MODULES
Discovery Component Message Tranfer Module

Machines, OS, Network

OPERATING ENVIRONMENT
Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

Explanation of Agent Conflicts & Harmful
Interactions

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A.
Giampapa: The RETSINA MAS Infrastructure. Autonomous Agents
and Multi-Agent Systems 7(1-2): 29-48 (2003)
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Domain ‘

* Multi-agent Systems

Application
MAS INFRASTRUCTURE INDIVIDUAL AGENT INFRASTRUCTURE Domain
Characteristic
MAS INTEROPERATION INTEROPERATION

Translation Services Interoperation Services

CAPABILITY TO AGENT MAPPING

CAPABILITY TO AGENT MAPPING
Middle Agents

Middle Agents Components

NAME TO LOCATION MAPPING NAME TO LOCATION MAPPING
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Public Ontology Protocols Servers ACL Parser

Private Ontology  Protocol Engine

COMMUNICATION INFRASTRUCTURE COMMUNICATION MODULES
Discovery Message Transfer Discovery Component Message Tranfer Module

OPERATING ENVIRONMENT

Machines, OS, Network Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

Explanation of Agent Conflicts & Harmful
Interactions

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A.
Giampapa: The RETSINA MAS Infrastructure. Autonomous Agents
and Multi-Agent Systems 7(1-2): 29-48 (2003)

Representation

Interoperation Modules ' '

Agent Strategy Summarization

ANS ANS Component
SECURITY SECURITY Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207
Certificate Authority ~ Cryptographic Services Security Module private/public Keys
PERFORMANCE SERVICES PERFORMANCE SERVICES
MAS Monitoring Reputation Services
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Representation

Agent Strategy Summarization
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the cupboard the bowl | | in the bow | | the bowt | | with a moxer | | byhand | Continue Clear ne

Explainable Agents

W. Lewis Johnson: Agents that Learn to
Explain Themselves. AAAI 1994: 1257-
1263

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van
den Bosch, Catholijn M. Jonker, John-Jules Ch. Meyer: Do
You Get It? User-Evaluated Explainable BDI Agents. MATES
2010: 28-39




Overview of explanation in different Al fields (5)

S=[s1.5.-..54]

+NLP  ©°o©

~0000-0 Fine-grained
explanations are in the
PrecﬁE
softmax form Of:

pf?l%%;;o * textsin areal-world

Generated i C:S!gmux d a ta S et;

Explanation e, - .

’ 13 e Numerical scores

Golden
Explanation e,

——

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)




Overview of explanation in different Al fields (5)

. Example #3 of 6 True Class: . Atheism m w m ‘
S1.S:
[ J N LP . . . Algorithm 1 Algorithm 2
Words that Al considers important: Predicted: Words that A2 considers important: Predicted:
0000..0 Fine-grained Gop @ e Poating @ oo
v
- : : mean Prediction correct: Host Prediction correct:
explanations are in the
Generator G Prediron] anyone J Rel J
.‘ sofimax form of: this by
O O O O O . Koresh in
T * textsin areal-world through N
| argmax . |
Generated i d a ta S et ) Document Document
Explanation e, .
| ' ) From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
! -r-R-chl-l-: N u m e rl Ca I SCO res Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Golden Petassified :ﬂ,,m, """" Nntp-Posting-Host: sarge.hq.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Explanation e, : 1 Organization: Verdix Corp Organization: Verdix Corp
H Lines: 8 Lines: 8

Er—
=

Explanation Factor

" LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":
Explainable NLP Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)




Overview of explanation in different Al fields (5)

| Example #3 of ¢ True Class: . Atheism CO OO ‘
e N LP ‘ ORC) Algorithm 1 Algorithm 2

Words that Al considers important: Predicted: Words that A2 considers important: Predicted:
0000..0 Fine-grained Gop @ posting @ oo
v
. . H mean Prediction correct: Host Prediction correct:
explanations are in the
Generator G Prem@ p anyone J Rel J
\ softmax fo rm Of: this| by
OOO O O . Koresh inl
P02 1) * textsin areal-world through N
| argmax . |
Generated : d a ta S et ) Document Document
Explanation e, | .
_ ' ) From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Btacsisi | .'-R_c!-ul-x-: N u m e rl Ca I SCO res Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Golden dassified g ed Nntp-Posting-Host: sarge hq.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Explanation e, : 1 Organization: Verdix Corp Organization: Verdix Corp
! Lines: 8 Lines: 8

e e
—— LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":

. Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144
Explainable NLP praining Y

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative

Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018) s

NLP Debugger . ) =1
Hendrik Strobelt, Sebastian Hendrik Strobelt, Sebastian enewors: [ (D (NN (D O O o models using Visual aresis metes | .
Gehrmann, Hanspeter Pfister, Gehrmann, Michael Behrisch, Adam I B2 o Ve oY, 'm T e — ——
Alexander M. Rush: LSTMVis: ATool  Perer, Hanspeter Pfister, Alexander M. o W o ) e — '
for Visual AnalySiS Of H|dden State RUSh: Seqzseq—ViS: A ViSLIal Debugglng das | tool nilfnid\ dazu e b«ei den <unk> n?,n sichen tiie vselen s, swap g;,_u,‘sv 2oy i bt = ‘ : - PR <unic |
Dynamics in Recurrent Neural Tool for Sequence-to-Sequence 3 BB -0 0 B0 -0 0 655 W , g
Networks. IEEE Trans. Vis. Comput. Models. IEEE Trans. Vis. Comput. g =
Graph. 24(1): 667-676 (2018) Graph. 25(1): 353-363 (2019) —

\/

i workin 721 omes, argely .



Overview of explanation in different Al fields (6)

* Planning and Scheduling

| Explanation Type | R1 | R2 [ R3 | R4 |
Plan Patch Explanation / VAL
Model Patch Explanation
Minimally Complete Explanation
Minimally Monotonic Explanation
(Approximate) Minimally Complete Explanation

S ANENANES
ANENENERIEN
ANEEPUANAN

| x| N[ x

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)

domain
Knowledge Problem
Base Interface

problem
Question/Suggestion new model

N

Planner
Interface

XAI-D

XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)

new plan

Response/Comparison




Overview of explanation in different Al fields (6)

* Planning and Scheduling :

YA\ W A/\B AN
| Explanation Type | R1 | R2 [ R3 | R4 | AR . . s

S1 Ter) S ™ S1 T S1
Plan Patch Explanation / VAL X v X v Q 1/ \31
Model Patch Explanation v X v v N ,
Minimally Complete Explanation v v X ? 2 r T X 2
Minimally Monotonic Explanation v v v ? . - N
(Approximate) Minimally Complete Explanation X v X v ”1;/ TS \Bk
Sk+1 CIeTk+1
Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner ‘? T
Decisions. CoRR abs/1810.06338 (2018) [
ga gA gA 9B ga
(a) (b) (c) (d)
= Knowledge Problem Human-in-the-loop Plannin
problem Base Interface P g

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)

Question/Suggestion

new model

N

Planner

XAl-Plan Interface

new plan

Response/Comparison

(Manual) Plan Comparison
XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner

Decisions. CoRR abs/1810.06338 (2018)




Overview of explanation in different Al fields (7)

 Robotics

¥7Z.‘Ll

\_ b

F7609
n{ r
| | F7607
¥771’§ $ i e
605
7 f
7
¢ o
P72
“F74 n
Abstraction, A
Level 1 Level 2 Level 3 Level 4

General
Picture

Start and finish point of
the complete route

Total distance and time
taken for the complete
route

Total distance and time
taken for the complete
route

Starting and ending land-
mark of complete route

Summary

Start and finish point for
subroute on each floor of
each building

Total distance and time
taken for subroute on
each floor of each build-
ing

Total distance and angles
for subroute on each floor
of each building

Starting and ending land-
mark for subroute on
each floor of each build-
ing

Specificity, S

Detailed
Narrative

Start and finish points of
complete route plus time
taken for each edge of
route

Angle turned at each
point plus the total dis-
tance and time taken for
each edge of route

Turn direction at each
point plus total distance
for each edge of route

All landmarks encoun-
tered on the route

Narration of Autonomous Robot Experience

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration of autonomous
robot experience. In IJCAI, pages 862—868. AAAI Press, 2016.

Daniel J Brooks et al. 2010. Towards State Summarization for Autonomous Robots..
Symposium: Dialog with Robots, Vol. 61. 62.

In AAAI Fall




Overview of explanation in different Al fields (7)

Robot: Ihave decided to turn left.

Xs"’ \; \"295’073

\rnoo I Human: Why did you do that?
*mz

F] | Robot: I believe that the correct action is to turn left
BECAUSE:

I’m being asked to go forward

AND This area in front of me was 20 cm higher than me

*highlights area*™

AND the area to the left has maximum protrusions of less

than 5 cm *highlights area*

AND I'm tilted to the right by more than 5 degrees.

Here is a display of the path through the tree that lead to

= knu -

Abstraction, A this decision. *displays tree*
Level 1 Level 2 Level 3 Level 4 Human: How confident are you in this decision?
E 2 | Start and finish point of | (vl distance and time | Total distance and tme | g, ho 2 ending land- Robot: The distribution of actions that reached this leaf
£ £ | the complete route taken for the complete | taken for the complete mark of complete route . . . X . 5 »
S& P route route P node is shown in this histogram. *displays histogram*
” g Stast and finish point for ’tl"(;tal dflstan:ebandt time | | distance and angles Sta::(mgf and:er;)dmgt land- This action is predicted to be correct 67% of the time.
z subroute on each floor of | & G, OF A o ild. | for subroute oneach floor | itto o EEREES Lo Human: Where did the threshold for the area in front come
S g - each floor of each build- P each floor of each build- .
&= = each building . of each building . ‘
i w ing ing from?
& | @ | Start and finish points of | Angle turned at each R . . . .
,l;"E complete route plus time | point plus the total dis- Tu_rnt d]'re:?(:nl 3l_§teach All landmarks encoun- Robot: Here‘ is the hlstogram of all training exz,imples that
SE taken for each edge of | tance and time taken for pomnt plus fota’ GISIANCe | o ra4 on the route reached this leaf. 80% of examples where this area was
b2 route each edge of route for each edge of route 1 1 3 “Ari
g above 20 cm predicted the appropriate action to be “drive
forward”.

Narration of Autonomous Robot Experience

From Decision Tree to human-friendly

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration of autonomous information

robot experience. In IJCAI, pages 862-868. AAAI Press, 2016. ) ) )
Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent

Robots. AAAI Workshops 2017
Daniel J Brooks et al. 2010. Towards State Summarization for Autonomous Robots.. In AAAI Fall

Symposium: Dialog with Robots, Vol. 61. 62.




Overview of explanation in different Al fields (8)

* Reasoning under Uncertainty

Probabilistic Graphical Models

Daphne Koller, Nir Friedman: Probabilistic Graphical Models - Principles and Techniques. MIT
Press 2009, ISBN 978-0-262-01319-2, pp. I-XXXV, 1-1231




XAl in
Machine Learning




Problems Taxonomy

OPEN THE BLACK
BOX PROBLEMS

BLACK BOX
EXPLANATION

[ 1

¥

MODEL
EXPLANATION

OUTCOME
EXPLANATION

|

TRANSPARENT
BOX DESIGN

MODEL
INSPECTION




Explanation by Design @

TRANSPARENT
BOX DESIGN




Black Box eXplanation

BLACK BOX
EXPLANATION

MODEL
EXPLANATION

|||

Y

OUTCOME
EXPLANATION

MODEL
INSPECTION




Example of XAl

For a Classification
Task

Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; and Pedreschi, D. 2018. A
survey of methods for explaining black box models. ACM Comput. Surv. 51(5):93:1-93:42.

https://xaitutorial2019.github.io/



https://xaitutorial2019.github.io/

Classification Problem

TRAINING BLACK BOX o \
T | JIT »| BLACK BOX »| PREDICTION
X =1{Xy, «ue, X}
TEST

SET




Model Explanation Problem '

Provide an interpretable model able to mimic the overall logic/behavior of
the black box and to explain its logic.

R, : IFOutlook = Sunny) AND
(Windy= False) THEN Play=Yes
R, : IFOutlook = Sunny) AND
INTERPRETABLE (Windy= True) THEN Play=No

—P BLACK BOX — GLOBAL — R, : IHOutlook = Overcast)
THEN Play=Yes

PREDICTOR R, : IFOutiook = Rainy) AND

TEST
INSTANCES

(Humidity= High) THEN Play=No
X =1{Xy, «ue, X} R, : IF(Outiook = Rainy) AND

(Humidity= Normal) THEN Play=Yes




Post-hoc Explanation Problem '

Provide an interpretable outcome, i.e., an explanation for the outcome of
the black box for a single instance.

INTERPRETABLE
TEST R,: IF(Outlook = Sunny) AND
INSTANCE BLACK BOX PRIE%?S[_OR I (Windy= False) THEN Play=Yes

X




Model Inspection Problem '

Provide a representation (visual or textual) for understanding either how the
black box model works or why the black box returns certain predictions more
likely than others.

TEST VISUAL ' ' :
INSTANCES >| BLACKBOX | | RepRENTATION |T T ¢ |

X =1{Xy, «uey X}




Transparent Box Designh Problem

Provide a model which is locally or globally interpretable on its own.

TRAINING INTERPRETABLE INTERPRETABLE R, : IHOutlook = Sunny) AND

» > b b —p | (Windy= False) THEN Play=Yes
SET LEARNER PREDICTOR R, : IF(Dutiook = Sunny) AND
- (Windy= True) THEN Play=No

— R. : IFOutlook = Overcast)
X=1{X1, e Xp} THEN Play=Yes

R, : IHOutlook = Rainy) AND

TEST (Humidity= High) THEN Play=No
. : R; : IFOutlook = Rainy) AND

INSTANCE (Humidity= Normal) THEN Play=Yes

X




State of the Art XAl in
Machine Learning

(By XAl Problem to be Solved)

Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; and Pedreschi, D. 2018. A
survey of methods for explaining black box models. ACM Comput. Surv. 51(5):93:1-93:42.

https://xaitutorial2019.github.io/



https://xaitutorial2019.github.io/

Categorization e —

—e
¢ 7. 000
* The type of problem
* The type of black box model that the explanator is able to open

* The type of data used as input by the black box model

* The type of explanator adopted to open the black box




Black Boxes QL _ .
¢ 7. 000
* Neural Network (NN)

* Tree Ensemble (TE)

e Support Vector Machine (SVM)

* Deep Neural Network (DNN)




Types of Data

Table of baby-name data
(baby-2010.csv)

Field
name rank gender year - Lames
Jacob 1 bo 2010

Y ™~ One row

Isabella 1 girl 2010 (4 fields) Il | Iages
Ethan 2 boy 2010
Sophia 2 girl 2010
Michael 3 boy 2010

] ] | ]

L ] L :

: 2000 rows : :

. all told ' .

Tabular
(TAB)




Explanators Q

— e
g ¢ 7. 000
* Decision Tree (DT)

* Decision Rules (DR)

e Features Importance (F/)
 Saliency Mask (SM)

* Sensitivity Analysis (SA)
 Partial Dependence Plot (PDP)
* Prototype Selection (PS)

 Activation Maximization (AM)




Reverse Engineering

* The name comes from the fact that we can only observe
the input and output of the black box.
* Possible actions are:
* choice of a particular comprehensible predictor

» querying/auditing the black box with input records
created in a controlled way using random perturbations

) _ ] Input Output
w.r.t. a certain prior knowledge (e.g. train or test)

* |t can be generalizable or not:
* Model-Agnostic
* Model-Specific




Model-Agnostic vs Model-Specific

PREDICTOR

INTERPRETABLE LEARNER

PREDICTION

TEST RANDOM DATA
INSTANCES| | PERTURBATION |' j BLAGREIK >
independentI
INTERPRETABLE INTERPRETABLE
PREDICTOR [EARNER  |[*—
T T ™ il
TEST | ' | RANDOM DATA
INSTANCES|  * * | PERTURBATION |~ © BLACKBOX ===
|
E dependentI
INTERPRETABLE :
|
|

b e e e e e e e e e e e o e e o e e o e e e e e o e - - o - - o - - - - — — — — —




- & 3 Y > I~ G -
& & $ A A Y
& & =) ad ] & s & & S P Nj
& D Q <
Trepan [22] Craven et al. 1996 DT NN TAB v v
- [57] Krishnan et al. 1999 DT NN TAB v v v
DecText [12] Boz 2002 DT NN TAB v v v
GPDT [46] Johansson et al. 2009 DT NN TAB v v v v
Tree Metrics [17] Chipman et al. 1998 DT TE TAB v
CCM [26] Domingos et al. 1998 DT TE TAB v v v
- [34] Gibbons et al. 2013 DT TE TAB v v
STA [140] Zhou et al. 2016 DT TE TAB v
CDT [104]  Schetininetal. 2007 DT TE TAB v
— 38 Hara et al 2016 DT TE TAB
TSP . .
Coni Rules Solving The Model Explanation Problem
G-REX
REFNE [141] Zhou et al. 2003 DR NN TAB v v v v
RxREN [6] Augasta et al. 2012 DR NN TAB v v v

Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; and Pedreschi, D. 2018. A survey of methods for explaining black box models. ACM Comput. Surv. 51(5):93:1-93:42.



Global Model Explainers

* Explanator: DT R, : IF(Outiook = Sunny) AND
* Black Box: NN, TE (Windy= False) THEN Play=Yes
* Data Type: TAB R, : IFOutlook = Sunny) AND
(Windy= True) THEN Play=No
* Explanator: DR {n-f_lE,lE g:;'i?g: s’
* Black Box: NN, SVM, TE R, : IF{Dutiook = Rainy) AND
* Data Type: TAB (Humidity= High) THEN Play=No
R; : IHOutlook = Rainy) AND
+ Explanator: Fl (Humidity= Normal) THEN Play=Yes

e Black Box: AGN
* Data Type: TAB




Trepa N — DT, NN, TAB S Unomiyeatas <25 5
i. P
60% 40%
01 T = root of the tree() @
02 Q = <T p X p {}> niformityCe:ISize<4.5
03 while Q not empty & size(T) < limit
04 N, Xy, Cy = pPop(Q) SareNulel <25
05 Zy = random(Xy, Cg)
06 blackbox g, = b(z), y = b(Xy) =% B
07 ouditing  jf same class(y U y,) w ) G G U
08 continue
09 S = best split(Xy U Zy, v U v;,)
10 S’'= best m-of-n split(S)
11 N = update with split(N, S')
12 for each condition ¢ in S’
13 C = new child of(N)
14 Cc = CNU {c}
15 X. = select with constraints(Xy, Cy)
16 put(Q, <C, X., C.>)

Mark Craven and JudeW. Shavlik. 1996. Extracting tree-structured representations of trained networks. NIPS.




RXREN - DR, NN, TAB

01 prune insignificant neurons
02 for each significant neuron
03 for each outcome
Im*bQL~>com ute mandatory data ranges
auditing P Y 9 AN
05 for each outcome
06 build rules using data ranges of each neuron
07 prune insignificant rules
08 update data ranges in rule conditions analyzing error

if ((data(11) > L1z Adata(l1) < U13) A (data(ly) > Lys Adata(lp) < Up3) A
(data(I3) > L33z Adata(I3) < Uz3)) then class =C3

else

if ((data(ly) = L11 ANdata(ly) < Up) A (data(l3) > L3; Adata(13) < Usy))
M. Gethsiyal Augasta and T. Kathirvalavakumar. 2012. Reverse then class =C1
engineering the neural networks for rule extraction in else

classification problems. NPL.

class = Cy



& S ~§ & 3‘5 Q’o* .\‘g c'}% \°$ 33 W 3}
s & § ¥ s o s & § § O
¢ S § § ¢ & ¢ <
. [134] Xu et al. 2015 SM DNN IMG v v v
_ (30] Fong et al. 2017 SM DNN IMG v
CAM [139] Zhou et al. 2016 SM DNN IMG v v v
Grad-CAM [106] Selvaraju et al. 2016 SM DNN IMG v v v
_ [109]  Simonianetal. 2013 SM DNN IMG v v
PWD [7] Bach et al. 2015 SM DNN IMG v v
. [113] Sturm et al. 2016 SM DNN IMG v v
DTD [78] Montavon et al. 2017 SM DNN IMG v v
DeapLIFT [107]  Shrikumaretal. 2017 FI DNN ANY v v
CP [64 Landecker et al 2013 SM NN IMG
— [14 . -
s Solving The Outcome Explanation Problem
_ [ i al N1E G 3
ExplainD [89] Poulin et al. 2006 FI SVM TAB v v
_ [20]  Strumbeljetal. 2010 FI AGN TAB v v v e

Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; and Pedreschi, D. 2018. A survey of methods for explaining black box models. ACM Comput. Surv. 51(5):93:1-93:42.



Local Model Explainers

* Explanator: SM
e Black Box: DNN, NN
* Data Type: IMG

° Explanator: Fl R1: |F(OUtIOOk = SunnY) AND
« Black Box: DNN, SVM (Windy= False) THEN Play=Yes

* Data Type: ANY

e Explanator: DT
* Black Box: ANY
* Data Type: TAB




Local Explanation

* The overall decision
boundary is complex

* |In the neighborhood of a
single decision, the
boundary is simple

* A single decision can be
explained by auditing the
black box around the
given instance and
learning a local decision.




0 1

duration_in_month <= ...
0.11

LIME —F1 AGN, ANY

ﬂccount_check_stamsz...
.09
01 4 = { } personal_status_sex=...
02 X instance to explain | .

o . in{;s:’z_irllment_as_mcome...
03 X' = real2interpretable(x) credit_history=critical...
04 for i in {1, 2, .., N} oncl
05 z;= sample around(x’)
06 z = 1nterpretabel2real(z’)
07 Z =72 U {<z;, b(z;), d(x, z)>}
08 w = solve Lasso(Z, k) ™~

black box

09 return w auditing

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why should i trust you?:
Explaining the predictions of any classifier. KDD.




age < 25
tru, \%
job mcome < 1500
LORE -DR, AGN, TAB o) g <
mcome < 900 age < 17 job grant
z \ / \ cle’ry \olther
O 1 X ins tance to eXpl ain deny g'/‘"cw;.t‘ wdeny gmn?}. deny grant

02 Z. = geneticNeighborhood(x, fitness_., N/2)

03 Z. = geneticNeighborhood(x, fitness,., N/2)
04 2 = 2- U 2, black box

05 c = buildTree(Z, b(Z)4  auditing

06 r = (p -> y) = extractRule(c, X)

07 ¢ = extractCounterfactual(c, r, X)

08 return e = <r, ©¢>

| r = {age < 25, job = clerk, income £ 900} -> deny |

® = {{{income > 500} -> grant), pedresch, Franco T
({17 < age < 25, job = other} -> grant)}




Meaningful Perturbations -sm, ban, MG

01
02
03

04

X 1lnstance to explain black box
varying X into X’ maximizing b(x)~b(x’)’//‘wwmm
the variation runs replacing a region R of x with:
constant value, noise, blurred image
reformulation: find smallest R such that b(xyz)<b(x)

flute: 0.9973 flute: 0.0007 Learned Mask




¢ s F§ & » & £ o »
§ Q-‘%. $ d af <~§ E}:b o 2 ; 5‘9 ,§Q F &
- v & & S ¢ ¥ g S
NID [83] Olden et al. 2002 SA NN TAB v
GDP (8] Baehrens 2010 SA AGN TAB v v v
QII [24] Datta et al 2016 SA AGN TAB v v v
IG [115] Sundararajan 2017 SA DNN ANY v v
VEC [18] Cortez et al. 2011 SA AGN TAB v v v
VIN [42] Hooker 2004 PDP AGN TAB v v v
ICE [35] Goldstein et al. 2015 PDP AGN TAB v v v v
Prospector  [55] Krause et al. 2016 PDP AGN TAB v v v
Auditing [2] Adler et al. 2016 PDP AGN TAB v v v v
OPIA [

5 Model Inspection Problem
_ [1
- [112]  Springenberg etal. 2014 AM DNN IMG v v

DGN-AM [80] Nguyen et al. 2016 AM DNN IMG v v v
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; and Pedreschi, D. 2018. A survey of methods for explaining black box models. ACM Comput. Surv. 51(5):93:1-93:42.




Inspection Model Explainers

* Explanator: SA
e Black Box: NN, DNN, AGN
* Data Type: TAB

e Explanator: PDP
* Black Box: AGN
* Data Type: TAB

* Explanator: AM
* Black Box: DNN
* Data Type: IMG, TXT




VEC -—sa AGN, TAB

calculated as the range, gradient, |
variance of the prediction. black box
_ _ . . \ auditing
* The visualizations realized are \
barplots for the features e N

importance, and Variable Effect /
Characteristic curve (VEC) plotting  _ s /

* Sensitivity measures are variables [ ] /\

0.3
l

feature distribution

0.2

- »

the input values versus the (average) \
outcome responses. N oA i

400 600 800 1000 1200 1400

200

0.0

Paulo Cortez and Mark J. Embrechts. 2011. Opening black box data mining models using sensitivity analysis. CIDM.



Prospector-rop, AGN, TAB

* Introduce random perturbations on input values to understand to
which extent every feature impact the prediction using PDPs.

* The input is changed one variable at a time.

@
(n lemogr: (age) - r: 0.15258
O 1.0
@ — O X J RIS,
(@) = =S 2 09
<L a0 5 oC 08
0.7
@
A
. 04 H
03 . ({1
M N i
black box ﬂu
ey @ [ PO
@ .~ auditing
n O‘%O 35 40 45 50 55 60 65 70 75 80
age_at_enroliment (staticSum) I Current State
o
. — l ‘ | L M Original Score
age_at_enrollment (staticSum) demographic (age) (0.153)
AR ©
55

30 35 40 45 50

60 65 70 75
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CPAR [135] Yin et al. 2003 DR — TAB v
FRL [127] Wang et al. 2015 DR - TAB v v v
BRL [66] Lethametal. 2015 DR _ TAB v

TLBR [114] Su et al. 2015 DR - TAB v v
IDS [61] Lakkaraju et al. 2016 DR — TAB v

Rule Set [130] Wang et al. 2016 DR — TAB v v v
1Rule [75] Malioutov et al. 2017 DR - TAB v v
PS 9] Bien et al. 2011 PS - ANY v v
BCM [51] Kim et al. 2014 PS _ ANY v v
OT-SpAMs [128] Wang et al. 2015 DT — TAB v v v

Solving The Transparent Design Problem

Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; and Pedreschi, D. 2018. A survey of methods for explaining black box models. ACM Comput. Surv. 51(5):93:1-93:42.



Transparent Model Explainers

* Explanators:
DR
e DT
* PS

* Data Type:
* TAB




CPAR -DRr 1AB

* Combines the advantages of associative (A1 =2, Ay =1, Ay = 1).

classification and rule-based classification. (A1 =2, A3 =1, A4 =2, Ay =3).
(A; =2, Az = 1, Ay = 1).

* It adopts a greedy algorithm to generate
rules directly from training data.

* It generates more rules than traditional
rule-based classifiers to avoid missing —>A3=1—
important rules.

* To avoid overfitting it uses expected
accuracy to evaluate each rule and uses the
best k rules in prediction.

Al=2 —7—> A2=1 —*A4=1

— > A4=) —A2=3

—A2=]

Xiaoxin Yin and Jiawei Han. 2003. CPAR: Classification based on predictive association rules. SIAM, 331-335



CORELS -pr, 7AB

* It is a branch-and bound algorithm that provides the optimal solution
according to the training objective with a certificate of optimality.

* It maintains a lower bound on the minimum value of error that each
incomplete rule list can achieve. This allows to prune an incomplete
rule list and every possible extension.

* It terminates with the optimal rule list and a certificate of optimality.

if (age = 18 — 20) and (sex = male) then predict yes

else if (age = 21 — 23) and (priors = 2 — 3) then predict yes
else if (priors > 3) then predict yes

else predict no

Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. 2017. Learning certifiably optimal rule lists. KDD.



State of the Art XAl in
Machine Learning

(By Machine Learning Type)




Overview of explanation in Machine Learning (1)

* All except Artificial Neural Network

Interpretable Models: .
« Decision Trees Is the person fit?

Age <30 ?

Yey %No
: 2
Eats a lot of pizzas™ Exercises in the morning?

78\ AN

Unfit Fit Fit Unfit

KDD 2019 Tutorial on Explainable Al in Industry - 5https://sites.google.com/view/kdd19-explainable-ai-tutorial



Overview of explanation in Machine Learning (1)

 All except Artificial Neural Network

Interpretable Models:

* Decision Trees, Lists

If Past-Respiratory-Iliness =Yes and Smoker =Yes and Age > 50, then Lung Cancer
Else if Allergies =Yes and Past-Respiratory-1liness = Yes, then Asthma

Else if Family-Risk-Respiratory =Yes, then Asthma

Else if Family-Risk-Depression =Yes, then Depression

Else if Gender =Female and Short-Breath-Symptoms =Yes, then Asthma

Else if BMI > 0.2 and Age> 60, then Diabetes

Else if Frequent-Headaches =Yes and Dizziness =Yes, then Depression

Else if Frequency-Doctor-Visits 2> 0.3, then Diabetes

Else if Disposition-Tiredness = Yes, then Depression

Else if Chest-Pain =Yes and Nausea and Yes, then Diabetes

Else Diabetes

Interpretable Decision Sets: A Joint Framework for Description and Prediction, Lakkaraju, Bach, Leskovec



Overview of explanation in Machine Learning (1)

 All except Artificial Neural Network

Interpretable Models:
* Decision Trees, Lists and Sets,

If Allergies =Yes and Smoker =Yes and Irregular-Heartbeat = Yes, then Asthma

If Allergies =Yes and Past-Respiratory-Iliness =Yes and Avg-Body-Temperature > 0.1, then Asthma

If Smoker =Yes and BMI > 0.2 and Age > 60, then Diabetes

If Family-Risk-Diabetes =Yes and BMI > 0.4 =Frequency-Infections > (0.2, then Diabetes

If Frequency-Doctor-Visits > 0.4 and Childhood-Obesity =Yes and Past-Respiratory-Iliness =Yes, then Diabetes
If Family-Risk-Depression =Yes and Past-Depression =Yes and Gender =Female, then Depression

If BMI > 0.3 and Insurance-Coverage =None and Avg-Blood-Pressure > (.2, then Depression

If Past-Respiratory-lIliness =Yes and Age > 50 and Smoker =Yes, then Lung Cancer

If Family-Risk-LungCancer =Yes and Allergies =Yes and Avg-Blood-Pressure > 0.3, then Lung Cancer

If Disposition-Tiredness =Yes and Past-Anemia =Yes and BMI > 0.3 and Rapid-Weight-Loss = Yes, then Leukemia
If Family-Risk-Leukemia = Yes and Past-Blood-Clotting = Yes and Frequency-Doctor-Visits > 0.3, then Leukemia

If Disposition-Tiredness =Yes and Irregular-Heartbeat =Yes and Short-Breath-Symptoms =Yes and Abdomen-Pains = Yes, then Myelofibrosis

Interpretable Decision Sets: A Joint Framework for Description and Prediction, Lakkaraju, Bach, Leskovec



Overview of explanation in Machine Learning (1)

* All except Artificial Neural Network

Interpretable Models:
* Decision Trees, Lists and Sets,

* GAMs,
* GLMs,
Model Form Intelligibility | Accuracy
Linear Model y=PBo+ P1x1+ ... + fn2n +++ s
Generalized Linear Model | g(y) = Bo + Biz1 + ... + BnTn b +
Additive Model y= fi(x1) + ... + fu(zn) ++ ++
Generalized Additive Model | g(y) = fi(z1) + ... + fn(zn) ++ ++
Full Complexity Model = f(&1,.i%05) + +++

Intelligible Models for Classification and Regression. Lou, Caruana and Gehrke KDD 2012

Accurate Intelligible Models with Pairwise Interactions. Lou, Caruana, Gehrke and Hooker. KDD 2013

KDD 2019 Tutorial on Explainable Al in Industry - 5https://sites.google.com/view/kdd19-explainable-ai-tutorial



Overview of explanation in Machine Learning (1)

* All except Artificial Neural Network

Interpretable Models:

* Decision Trees, Lists and Sets,
* GAMs,

* GLMs,

* Linear regression,

* Logistic regression,

* KNNs

Interpretable Decision Sets: A Joint Framework for Description and Prediction, Lakkaraju, Bach, Leskovec



Overview of explanation in Machine Learning (1)

* All except Artificial Neural Network

Interpretable Models:

* Decision Trees, Lists and Sets,
* GAMs,

* GLMs,

* Linear regression,

* Logistic regression,

* KNNs

Data: titanic | naive Bayes Explanation
Model: NB

Prediction: p(survived = yes|x) = 0.671

Actual class label for this instance: yes

Feature Contribution Value
Class =

Age = adult

Sex = female

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:

history, state of the art and perspective. Artificial Intelligence

in Medicine, 23:89-109, 2001.



Overview of explanation in Machine Learning (1)

* All except Artificial Neural Network

Interpretable Models:

* Decision Trees, Lists and Set
* GAMs, |
* GLMs, )

* Logistic regression,

* KNNs Counterfactual
Data: titanic | naive Bayes Explanation What-lf
Model: NB
Prediction: p(survived = yes|x) = 0.671 Brent D. MittEIStadtf Chris
Actual class label for this instance: yes Russell, Sandra Wachter:
Explaining Explanations in Al.
Feature Contribution Value FAT 2019: 279-288

Class =
adult Rory Mc Grath, Luca Costabello,
Chan Le Van, Paul Sweeney,
Farbod Kamiab, Zhao Shen,
Freddy Lécué: Interpretable Credit
Application Predictions With
Counterfactual Explanations.
CoRR abs/1811.05245 (2018)

Age =

Sex = female

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:

history, state of the art and perspective. Artificial Intelligence

in Medicine, 23:89-109, 2001.



Overview of explanation in Machine Learning (1)

* All except Artificial Neural Network

Interpretable Models:

* Decision Trees, Lists and Set
e GAMs,

e GLMs,

* Linear regression,

* Logistic regression,
 KNNs

Data: titanic

Model: NB

Prediction: p(survived = yes|x) = 0.671
Actual class label for this instance: yes

| naive Bayes Explanation

Feature Contribution Value
Class = 3rd
Age = adult
Sex = female

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:

history, state of the art and perspective. Artificial Intelligence

Num Sat
Increase By () Decrease By

Counterfactual
What-if

Brent D. Mittelstadt, Chris
Russell, Sandra Wachter:
Explaining Explanations in Al.
FAT 2019: 279-288

Rory Mc Grath, Luca Costabello,
Chan Le Van, Paul Sweeney,
Farbod Kamiab, Zhao Shen,
Freddy Lécué: Interpretable Credit
Application Predictions With
Counterfactual Explanations.
CoRR abs/1811.05245 (2018)

Predicted cancer probability
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SRF volume In central-3mm at M2 |
IR thickness in fovea at M1 |
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IRF volume in parafovea at M |
SRF volume in parafovea-temporal at M2 I
IR thickness in fovea at M2 | IS
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IRF volume in central-3mm at M2 I
SRF area in central-3mm at M2 I
SRF area in parafovea-temporal at M2 |
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SRF volume in fovea at M1 I
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IRF area in parafovea at M2 I
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Relative Fealure Importance

(a)

Feature Importance
Partial Dependence Plot
Individual Conditional Expectation
Sensitivity Analysis

in Medicine, 23:89-109, 2001.



Overview of explanation in Machine Learning (2)

* Only Artificial Neural Network
Network f(z1,x2)

Attributions at x1 = 3,22 = 1

Integrated gradients x; = 1.5, x2 = —0.5
DeepLift z1 = 1.5, z2 = —0.5
LRP x1 =15, x2 =-0.5

g(x,, x,) = ReLU(z, - z,)
=1

z, = ReLU(x,)
=1

Network g(x1, z2)

Attributions at 1 = 3,z2 = 1
Integrated gradients xz; = 1.5, zo = —0.5
DeepLift Ty =2, x9 =—1
LRP 1 =2, x2 =—1

Attribution for Deep
Network (Integrated gradient-based)
Mukund Sundararajan, Ankur Taly, and Qiqi Yan.

Axiomatic attribution for deep networks. In ICML, pp.
3319-3328, 2017.

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje:

Learning Important Features Through Propagating
Activation Differences. ICML 2017: 3145-3153




Overview of explanation in Machine Learning (2)

* Only Artificial Neural Network

Network f(z1,x2)
Attributions at x1 = 3,22 = 1

Integrated gradients x; = 1.5, x2 = —0.5
DeepLift z1 = 1.5, z2 = —0.5
LRP x1 =15, x2 =-0.5

g(x,, x,) = ReLU(z, - z,)
=1

Network g(x1, z2)

Attributions at x1 = 3,22 = 1
Integrated gradients xz; = 1.5, zo = —0.5
DeepLift Ty =2, x9 =—1
LRP 1 =2, x2 =—1

Attribution for Deep
Network (Integrated gradient-based)

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.

Axiomatic attribution for deep networks. In ICML, pp.

3319-3328, 2017.

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje:

Learning Important Features Through Propagating
Activation Differences. ICML 2017: 3145-3153

Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, Cynthia

Rudin: This looks like that: deep learning for interpretable
image recognition. CoRR abs/1806.10574 (2018)

prototype class‘iﬁcr network h

— ! prototype fully-connected ~ softmax
layer p layer w layer s

transformed

encoder
network

f

input

output of
prototype
classifier
network

(hef)(x)

reconstructed
input

(gNX

decoder
network
g

Auto-encoder / Prototype

Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep

Learning for Case-Based Reasoning Through Prototypes: A
Neural Network That Explains Its Predictions. AAAI 2018:

3530-3537




Overview of explanation in Machine Learning (2)

* Only Artificial Neural Network

Network f(z1,x2)

Attributions at x1 = 3,22 = 1
Integrated gradients x; = 1.5, x2 = —0.5
DeepLift z1 = 1.5, z2 = —0.5
LRP x1 =15, xz0 =—-0.5

Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, Cynthia
Rudin: This looks like that: deep learning for interpretable
image recognition. CoRR abs/1806.10574 (2018)

g(x,, x,) = ReLU(z, - z,)
=1

Network g(x1, z2)
Attributions at x1 = 3,22 = 1

prototype class‘iﬁcr network h

r
— prototype fully-connected ~ softmax

Integrated gradients xz; = 1.5, zo = —0.5 layer p layerw  layers
Deeleft xl = 27 xz = _1 inpul encoder "an;:;:::ned [ ] gODd
LRP x1 =2, 2 =—1 x ek re

output of
prototype

classifier

Attribution for Deep —

Network (Integrated gradient-based)

reconstructed
input

(gNX

decoder
network
g

network

(hef)(x)

20f {SOL < 27.5;
TA < 3165570}

bad good

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. L]
Axiomatic attribution for deep networks. In ICML, pp.

3319-3328, 2017. Surogate Model

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Representations of Trained Networks. NIPS 1995: 24-30

Auto-encoder / Prototype

Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep
Learning for Case-Based Reasoning Through Prototypes: A
Neural Network That Explains Its Predictions. AAAI 2018:

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje:

Learning Important Features Through Propagating
Activation Differences. ICML 2017: 3145-3153

3530-3537




Overview of explanation in Machine Learning (2)

* Only Artificial Neural Network

% %) =RelLl(Z ~1-2,)
=1

Network f(z1,x2)

Attributions at x1 = 3,22 = 1
Integrated gradients x; = 1.5, x2 = —0.5
DeepLift z1 = 1.5, z2 = —0.5
LRP x1 =15, xz0 =—-0.5

g(x,, x,) = ReLU(z, - z,)
=1

Network g(x1, z2)

Attributions at x1 = 3,22 = 1
Integrated gradients xz; = 1.5, zo = —0.5
DeepLift Ty =2, x9 =—1
LRP 1 =2, x2 =—1

Attribution for Deep
Network (Integrated gradient-based)

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.

Axiomatic attribution for deep networks. In ICML, pp.

3319-3328, 2017.

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje:

Learning Important Features Through Propagating
Activation Differences. ICML 2017: 3145-3153

encoder
network

f

decoder
network
g

Chaofan Chen, Oscar Li, Alina Barnett, Jonathan
Rudin: This looks like that: deep learning for interpretable
image recognition. CoRR abs/1806.10574 (2018)

prototype class‘iﬁcr network h

Su, Cynthia

r
prototype fully-connected ~ softmax
layer p layer w layer s

transformed
input

fx

Auto-encoder / Prototype

output of
prototype
classifier
network

(hef)(x)

Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep
Learning for Case-Based Reasoning Through Prototypes: A
Neural Network That Explains Its Predictions. AAAI 2018:

3530-3537

Less interpretable Interpretable
End-to-End End-to-End

e

(a) Standard attention model (b) RETAIN model

Attention Mechanism
Edward Choi, Mohammad Taha Bahadori, Jimeng Sun,

Joshua Kulas, Andy Schuetz, Walter F. Stewart: RETAIN: An

Interpretable Predictive Model for Healthcare using
Reverse Time Attention Mechanism. NIPS 2016: 3504-

3512

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate.
International Conference on Learning Representations,
2015

3 of {SOL < 21.5;
TA < 3165570}

bad good

Surogate Model

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured
Representations of Trained Networks. NIPS 1995: 24-30




Overview of explanation in Machine Learning (3)

Airplane

* Computer Vision

res5c unit 1379

Train
res5c unit 924

i
inception_5b unit 626

Interpretable Units
T

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba:
nception_5b unit 415

'g-&-_ ) Network Dissection: Quantifying Interpretability of Deep Visual
IS G, . .
~§ S Representations. CVPR 2017: 3319-3327




Overview of explanation in Machine Learning (3)

o Airplane
* Computer Vision o —

Train
res5c unit 924

Interpretable Units

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba:

Network Dissection: Quantifying Interpretability of Deep Visual
Representations. CVPR 2017: 3319-3327

(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NiPS 2017: 5580-5590




Overview of explanation in Machine Learning (3)

* Computer Vision

Train
res5c unit 924

nception_5b unit 4

o5

Airplane
res5c unit 1243

Interpretable Units

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba:
Network Dissection: Quantifying Interpretability of Deep Visual
Representations. CVPR 2017: 3319-3327

(a) Input Image

(c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

(b) Ground Truth

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NiPS 2017: 5580-5590

Western Grebe Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly,
and black back.

Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak
and red eye.

L Albati
aysan Abaross Description: This is a large flying bird with black wings and a white belly.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
x | and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked
yellow beak, and white belly.

Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.
Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back

and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white
neck and black back.

Visual Explanation

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3-19
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Western Grebe Description: This is a large bird with a white neck and a black back in the water.

Airplane Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly,
. . R and black back.
[ J CO m u te r V I S I O n ressc unit 1243 Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak
and red eye.

L Albati
aysan Abaross Description: This is a large flying bird with black wings and a white belly.

Train Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
x | and white belly.

res5c unit 924

Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked
yellow beak, and white belly.

Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white
neck and black back.

Interpretable Units

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba:
Network Dissection: Quantifying Interpretability of Deep Visual Visual Explanatlon
Representations. CVPR 2017: 3319-3327

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3-19
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label: broom 3 logit: 15.65
pred: broom § g prob: 0.71
label: abaya - g 1 : 1 ™ logit: 11.07
pred: cloak 7 BN = BN TR prob: 0.33
label: Dungeness crab L] % i i o & . logit: 12.39
pred: Dungeness crab o 2 x prob: 0.39
bis

(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, lan J. Goodfellow, Moritz Hardt, Been Kim:
Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for Sanity Checks for Saliency Maps. NeurlPS 2018: 9525-9536
Computer-Vision?-N{PS-2017:5580-5590

Uncertainty Map




On the Role of
Knowledge Graphs in
Explainable Machine

Learning

On the Role of Knowledge Graph in Explainable Al - under open review at the Semantic Web Journal -
http://www.semantic-web-journal.net/content/role-knowledge-graphs-explainable-ai



http://www.semantic-web-journal.net/content/role-knowledge-graphs-explainable-ai

Knowledge Graph (1)

o Set of (subject, predicate, object — SPO) triples - subject and object are
entities, and predicate is the relationship holding between them.

e Each SPO triple denotes a fact, i.e. the existence of an actual relationship
between two entities.

Alice Leonardo Da Vinci

subject predicate object @
Bob is interested in The Mona Lisa
Bob is a friend of Alice
The Mona Lisa was created by Leonardo Da Vinci
Bob is a Person @ imerestedin
La Joconde a W. is about The Mona Lisa
Bob is born on 14 July 1990

Person 14 July 1990 . .
La Joconde a Washington

1572



Knowledge Graph (2)

Name Entities = Relations | Types | Facts
Freebase 40M 35K 26.5K 637M
DBpedia (en) 4.6M 1.4K 735 580M
YAGO3 17M 77 488K  150M
Wikidata 15.6M 1.7K 232K 66M
NELL 2M 425 285 433K
Google KG 570M 35K 1.5K 18B
Knowledge Vault 45M 4.5K 1.1K  271M
Yahoo! KG 3.4M 800 250 1.39B

e Manual Construction - curated, collaborative
e Automated Construction - semi-structured, unstructured

Right: Linked Open Data cloud - over 1200 interlinked KGs
encoding more than 200M facts about more than 50M entities.

Spans a variety of domains - Geography, Government, Life
Sciences, Linguistics, Media, Publications, Cross-domain..

August 28th, 2019 Tutorial on Explainable Al 155



Knowledge Graph Construction

Knowledge Graph construction methods can be classified in:

e Manual — curated (e.g. via experts), collaborative (e.g. via volunteers)

e Automated — semi-structured (e.g. from infoboxes), unstructured (e.g. from text)
Coverage is an issue:

e Freebase (40M entities) - 71% of persons without a birthplace, 75% without a
nationality, even worse for other relation types [Dong et al. 2014]

e DBpedia (20M entities) - 61% of persons without a birthplace, 58% of scientists
missing why they are popular [KrompaB et al. 2015]

Relational Learning can help us overcoming these issues.

August 28th, 2019 Tutorial on Explainable Al 157



Knowledge Graph Embeddings in Machine Learning

https://stats.stackexchange.com/questions/230581/decision

-tree-too-large-to-interpret



https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret

Knowledge Graph for Decision Trees

https://stats.stackexchange.com/questions/230581/decision

-tree-too-large-to-interpret



https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret

Knowledge Graph for Deep Neural Network (1)

@ nput Layer Training Data

Input
(unlabeled
image)

Neurons respond

Low-Ié:veI
to simple shapes :

st Layer featur:es to

high-fevel
Neurons respond to >< >§< features

more complex
structures

----
""""
----------
------
--------
---------

(O Hidden Layer

Neurons respond to
highly complex,
abstract concepts

@ Output Layer ‘ Q

il B8 A e —) § 20w DG 6




Knowledge Graph for Deep Neural Network (2)
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Input
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Knowledge Graph for Personalized XAl

Description 1: This is an orange train accident <=

Description 2: This is an train accident between two speed e
merchant trains of characteristics X43-B and Y33-Cin a dry et
environment

Description 3: This is a public transportation accident «--======""




Knowledge Graph for Explaining Transfer Learning

“How to explain transfer learning with
appropriate knowledge representation?

Proceedings of the Sixteenth International Conference on Principles of
Knowledge Representation and Reasoning (KR 2018)

Knowledge-Based Transfer Learning Explanation

Jiaoyan Chen
Department of Computer Science
University of Oxford, UK

Jeff Z. Pan
Department of Computer Science
University of Aberdeen, UK

Huajun Chen

Freddy Lecue
INRIA, France
Accenture Labs, Ireland

lan Horrocks
Department of Computer Science
University of Oxford, UK

College of Computer Science, Zhejiang University, China
Alibaba-Zhejian University Frontier Technology Research Center
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Debugging Artificial Neural Networks — Industry Agnostic
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Challenge: Designing Artificial Neural Network
architectures requires lots of experimentation (i.e.,
training  phases) and parameters tuning
(optimization strategy, learning rate, number of
layers...) to reach optimal and robust machine
learning models.

Al Technology: Artificial Neural Network

XAl Technology: Artificial Neural Network, 3D
Modeling and Simulation Platform For Al




Explaining Visual Question Answering — Industry Agnostic

Tabular QA Visual QA Reading Comprehension Challenge: What is the robustness of Visual
[Rank|  Nation|Gold Silver [Bronze [Total Peyton Manning became the first Question Answering models? What is the
] Indi o2 58 37 197 quarterback ever to lead two different . .
| In ’:l :l 2 :l 0 [24 165 teams to multiple Super Bowls. He is also ImpaCt Of Semant|CS?
|2 .IN?p j[3 Il [ l the oldest quarterback ever to play in a
B |SriLanka [16 j42 62 120 Super Bowl at age 39. The past record Al Technology: Artificial Neural Networks.
|4 IPakistan 1[10 j|36 [30 76 was held by John Elway, who led the

Broncos to victory in Super Bowl XXXIII at

age 38 and is currently Denver’s Executive XAI TeCh nOIOgy: I ntegrated G rad ie nts

Vice President of Football Operations and

|5 |Bangladeshf2 10 35 {47
6 |Bhutan 1 J6 7 14

. I ]
IL IMaldlves i[Lik) l4 ,[4 General Manager
Q: How many medals did India win? Q: How symmetrical are the white Q: Name of the quarterback who
A 197  bricks on either side of the building? was 38 in Super Bowl XXXIII?

A:very A: John Elway e

: Te 0:

Neural Programmer (2017) model Kazemi and Elqursh (2017) model. Yu et al (2018) model. %% oog e
33.5% accuracy on WikiTableQuestions 61.1% on VQA 1.0 dataset 84.6 F-1 score on SQUAD (state of the art) *e®

(state of the art = 66.7%)

Q: How symmetrical are the white bricks on either side of the building? What is the man doing? — What is the tweet doing?
A: very ' '

How many children are there? — How many tweet are there?
Q: How asymmetrical are the white bricks on either side of the building?
A: very . |
VQA model’s response remains the same 75.6

Q: How big are the white bricks on either side of the building?

A: very of the time on questions that it originally
Q: How fast are the bricks speaking on either side of the building? answe red CorreCtly
A: very

Source: ExplamaEle ATin |nHus’Ery. RDD 2010 Tutorial. Ankur |a|y, Mukund Sunaararajan, Redar DHamaHere, Pramod Mudrakarta |



Relevance Debugging and Explaining — Industry Agnostic

Challenge: A Machine Learning system can fail in many different
points e.g., data features selection, construction, inconsistencies.
How to debug bad performance in machine learning models and
prediction?

Li“kEd m Al Technology: Artificial Neural Networks.

XAl Technology: Model / Prediction comparison

Lead Software Engineer - Platform
Confidential

¥11 + #1.4 ECOUETIETIT

Lead Software Engineer - Platform
Confidential

Source: Exp|a|na5|e ATin |nausfry. RDD 2010 Tutorial. Daniel Ulu, Yucheng Qlan



Explaining Recommendation— Social Media

Challenge: How to establish trust between Social Media
and their users? Explaining post / news recommendation is
crucial for users to engage with content providers.

Al Technology: Artificial Neural Networks.

XAl Technology: Recommendation-based

Why Am | Seeing This? We Have an
Answer for You

& ( \
. . c— s Youre friends with Eric Cheng
r
I . ' o Youre a member of Woofers and Puppers
i
| e
4 _“' You've liked Eric Chang's posts maore
. — e B than posts from others
comm— -
YOou' ve commeanmad an posts with
pholoa more than other media types
. ! This poat in Woolers and Pugpers 4
' “ popule compared to other peats
pou've seen

Oher Tactors #30 Inlluencs e orde

of posts. Learn More

KDD 2019 Tutorial on Explainable Al in Industry - 5https://sites.google.com/view/kdd19-explainable-ai-tutorial



Obstacle Identification Certification (Trust) - Transportation

THALES

Challenge: Public transportation is getting more and more self-
driving vehicles. Even if trains are getting more and more
autonomous, the human stays in the loop for critical decision, for
instance in case of obstacles. In case of obstacles trains are
required to provide recommendation of action i.e., go on or go
back to station. In such a case the human is required to validate the
recommendation through an explanation exposed by the train or
machine.

Al Technology: Integration of Al related technologies i.e., Machine
Learning (Deep Learning / CNNs), and semantic segmentation.

XAl Technology: Deep learning and Epistemic uncertainty




Explaining Flight Performance- Transportation

Challenge: Predicting and explaining aircraft
engine performance

Al Technology: Artificial Neural Networks

XAl Technology: Shapely Values

THALES




Explainable On-Time Performance - Transportation

KLM / Transavia Flight Delay Prediction

PLANE INFO ARRIVAL TURNAROUND DEPARTURE

Status / Aircraft Flight ETA  Status Delay Code Gate Slot Progress Milestones Flight ETA Status Delay Code

® urtwer v
o dsfew v

© omidh v

@ kshdbs v

00 000000 O0CFQC
< <

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, lan Horrocks, Huajun Chen: Knowledge-Based Transfer
Learning Explanation. KR 2018: 349-358

Nicholas McCarthy, Mohammad Karzand, Freddy Lecue: Amsterdam to Dublin Eventually Delayed?
LSTM and Transfer Learning for Predicting Delays of Low Cost Airlines: AAAI 2019

Challenge: Globally 323,454 flights are delayed every year. Airline-
caused delays totaled 20.2 million minutes last year, generating
huge cost for the company. Existing in-house technique reaches
53% accuracy for predicting flight delay, does not provide any time
estimation (in minutes as opposed to True/False) and is unable to
capture the underlying reasons (explanation).

Al Technology: Integration of Al related technologies i.e., Machine
Learning (Deep Learning / Recurrent neural Network), Reasoning
(through semantics-augmented case-based reasoning) and Natural
Language Processing for building a robust model which can (1)
predict flight delays in minutes, (2) explain delays by comparing
with historical cases.

XAl Technology: Knowledge graph embedded Sequence Learning
using LSTMs

THALES

INNOVATION ARCHITECTURE:

ACCENTU
LABS




Model Explanation for Sales Prediction - Sales

® What are top driver features for a certain company to ° Challenge: How to predict and explain upsell / churn for a
have high/low probability to upsell/churn? L I n ked company?
®

@ Feature Contributor

Al Technology: Artificial Neural Networks.

@ Which top driver features canbe perturbedrwewane™) XAl Technology: Features importance (contribution, influence),
[to increase/decrease probability for a certain company? J LIME.

@ Feature Influencer

Company: CompanyX
Upsell LCP (LinkedIn Career Page) Top Feature Contributor
0 f1: 430.5
o f2: 216
. : ‘ € f3:10097.57
Not Likely | Less Likely Likely Q f4- 15
0 0.25 05 0.75 1
Top Feature Influencer (Positive) Top Feature Influencer (Negative)
f5:0 5.4, (70.03 f1: 430.5 —148.7, ', 0.20
f6: 168 = 0, /70.03 f2:216=0, \\ 0.17
£7:0=0.24, /0.0 f8: 423—146.0, \ 0.07

Source: Exp|a|na5|e ATin |nausfry. RDD 2010 Tutorial. Jilel Yang, Wel Ul, Songfao Guo



Explainable Risk Management - Finance

INNOVATION ARCHITECTURE:

Portfolio 1 Portfolio Overview Joha Smith ACCENTU
LABS

All Contracts (123) Contract Lifecycle

View all Contracts »

®) Negative EAC Estimate

Challenge: Accenture is managing every year more than 80,000

Net Potential Loss

G 132 opportunities and 35,000 contracts with an expected revenue of
S ta $34.1 billion. Revenue expectation does not meet estimation due
e el © ° to the complexity and risks of critical contracts. This is, in part,
5 ol 0 0 8 o due to the (1) large volume of projects to assess and control, and

"; N - oo (2) the existing non-systematic assessment process.
- 0 ° o 0. 3 Al Technology: Integration of Al technologies i.e., Machine
% 0 . © Learning, Reasoning, Natural Language Processing for building a
LB o robust model which can (1) predict revenue loss, (2) recommend
corrective actions, and (3) explain why such actions might have a

eveue ) Newy Addd positive impact.

low high

XAl Technology: Knowledge graph embedded Random Forrest

Jiewen Wu, Freddy Lécué, Christophe Guéret, Jer Hayes, Sara van de Moosdijk, Gemma
Gallagher, Peter McCanney, Eugene Eichelberger: Personalizing Actions in Context for Risk
Management Using Semantic Web Technologies. International Semantic Web Conference (2)
2017:367-383




Explainable Anomaly Detection — Finance (Compliance)

AIFS: Accenture Intelligent Finance System accen?ure
% ‘ Expenses Overview of Austin vs. other Cities + ‘ Control Panel + Bé
T Prdkhix > o g
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INNOVATION ARCHITECTURE:

ACCENTU

e LABS

Data analysis
for spatial interpretation
of abnormalities:
abnormal expenses

Semantic explanation
(structured in classes:
fraud, events, seasonal)
of abnormalities

Detailed semantic

_ explanation (structured

in sub classes e.g.
categories for events)

e -
Wi
,\
~ }-'
R
.4 -
o -
-y S 2
4.
A,
"

Freddy Lécué, Jiewen Wu

M e WO

: Explaining and predicting abnormal

expenses at large scale using knowledge graph based
reasoning. J. Web Sem. 44: 89-103 (2017)

Challenge: Predicting and explaining abnormally employee expenses (as high accommodation price in 1000+ cities).

Al Technology: Various techniques have been matured over the last two decades to achieve excellent results. However most methods address the problem from a
statistic and pure data-centric angle, which in turn limit any interpretation. We elaborated a web application running live with real data from (i) travel and expenses
from Accenture, (ii) external data from third party such as Google Knowledge Graph, DBPedia (relational DataBase version of Wikipedia) and social events from

Eventful, for explaining abnormalities.

XAl Techrotogy<mowiet e grapiremett et trserirte-reariTg



Counterfactual Explanations for Credit Decisions (1) - Finance

* Local, post-hoc, contrastive
explanations of black-box
classifiers

* Required minimum change in
input vector to flip the
decision of the classifier.

* Interactive Contrastive
Explanations THALES

INNOVATION ARCHITECTURE:

ACCENTU
LABS

Challenge: We predict loan applications with off-the-shelf,
interchangeable black-box estimators, and we explain their
predictions with counterfactual explanations. In counterfactual
explanations the model itself remains a black box; it is only
through changing inputs and outputs that an explanation is

obtained.

Al Technology: Supervised learning, binary classification.

XAl Technology:

Post-hoc explanation,

Counterfactuals, Interactive explanations

AX =7

.."

f

f

>

Can remain as black box

Local

> Y’

Y

explanation,

Change to
desired
outcome

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations.

FEAP-Al4fin workshop, NeurlPS, 2018.




Counterfactual Explanations for Credit Decisions (2) -

Finance

Sorry, your loan application has been rejected.

LABS

The following features w

PercentInstallTrad... NetFractionRevolv... NetFractionInstall...
NumRevolvingTra... NumBank2NatlTra... PercentTradesWB...

The following features w

The following features require I l

THALES

Our analysis: ACCENTU

MSinceOldestTrad... AverageMInFile NumTotalTrades e I I

Net Fraction Install M Since Oldest Max Delq n N B k P l
MaxDelq2PublicR... MaxDelqEver Burden Trade Open W
Il |

@ InputValve [ IncreaseBy () Decrease By

Counterfactuals suggest where to increase (green, dashed) or decrease (red, striped) each feature.

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations.

FEAP-Al4fin workshop, NeurlPS, 2018.




Counterfactual Explanations for Credit Decisions (3) - Finance

J\]j Drag sliders to change constraints.

External Risk Estimate

o :
66

M Since Oldest Trade Open

O -
113

M Since Most Recent Trade O...

@

2
Average M In File
® .

65

Num Satisfactory Trades

@ Select categorical constraints.

Max Delq 2 Public Rec Last 12M

Current: unknown delinquency

10 selected

Max Delq Ever
Current: 60 days delinquent

RECOMMENDED CHANGES
THALES
ACCENTU
LABS

-2V
-66Y
+13 A -54V
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Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations.
FEAP-Al4fin workshop, NeurlPS, 2018.




Explaining Talent Search Results — Human Resources

Challenge: How to rationalize a talent search for a recruiter when
looking for candidates for a given role. Features are dynamic and
costly to compute. Recruiters are interested in discriminating
between two candidates to make a selection.

Al Technology: Generalized Linear Mixed Models, Artificial Neural
Networks, XGBoost

Cart Meyer

XAl Technology: Generalized Linear Mixed Models (inherently
explainable), Integrated Gradient, Features Importance in XGBoost

Unaed Statee $

Srie lenaen
Dnplaymart type + g .
L I n ked Feature Description Difference (1 vs 2) Contribution
(

Feature.......... Description.......... -2.0476928 -2.144455602
Feature.......... Description.......... -2.3223877 1.903594618
Feature.......... Description.......... 0.11666667 0.2114946752
Feature.......... Description.......... -2.1442587 0.2060414469
Feature.......... Description.......... -14 0.1215354111
Feature.......... Description.......... 1 0.1000282466
""""" Feature.......... Description.......... -92 -0.085286277
lllllllllll i Feature.......... Description......... 0.9333333 0.0568533262
Feature.......... Description.......... -1 -0.051796317
Feature.......... Description.......... -1 -0.050895940

ource: explainanbile In Inaustry. utorial. varun viithal, Qiris athalagiri, Sahin Cem Geyik



Explanation of Medical Condition Relapse — Health

T H IO\ L E 5 Challenge: Explaining medical condition relapse in the context
of oncology.
ACCENTU Al Technology: Relational learning
LABS
XAl Technology: Knowledge graphs and Artificial Neural
Networks
Knowledge graph

parts explaining
medical condition
relapse




Breast Cancer Survival Rate Prediction - Health

predxct

breast cancer

~- I ; RERICRE
diagnosis

Post 0 Yes No Unknown
Menopausal?

ER status 0 Positive = Negative

HER2 status 0 Positive = Negative Unknown

Ki-67 status o Positive Negative Unknown

Tumour size 6 7

- +
(mm)
Tumour grade 6 1 2 3

Detected by 0 Screening Symptoms Unknown

Positive nodes 0 - 2 +
0 Yes No Unknown

Results

ques Chart  Texts Icons
‘ New recording |

These results are for women who have already had surgery. This table
shows the percentage of women who survive atleast 5 10 15 years

after surgery, based on the information you have provided.

Treatment Additional Benefit Overall Survival %
Surgery only - 72%
+ Hormone therapy 0% 72%

If death from breast cancer were excluded, 82% would survive at

least 10 years. 6
Show ranges? o Yes No

David Spiegelhalter, Making Algorithms trustworthy, NeurlPS 2018 Keynote
predict.nhs.uk/tool

Challenge: Predict is an online tool
that helps patients and clinicians
see how different treatments for
early invasive breast cancer might
improve  survival rates after
surgery.

Al Technology: competing risk
analysis

XAl Technology: Interactive
explanations, Multiple
representations.




More on XAl




(Some) Tutorials, Workshops, Challenge

Tutorial:

AAAI 2019 Tutorial on On Explainable Al: From Theory to Motivation, Applications and Limitations (#1) - https://xaitutorial2019.github.io/

ICIP 2018 / EMBC 2019 Interpretable Deep Learning: Towards Understanding & Explaining Deep Neural Networks (#2) - http://interpretable-ml.org/icip2018tutorial/ - http://interpretable-
ml.org/embc2019tutorial/

ICCV 2019 Tutorial on Interpretable Machine Learning for Computer Vision (#2) - https://interpretablevision.github.io/

KDD 2019 Tutorial on Explainable Al in Industry (#1) - https://sites.google.com/view/kdd19-explainable-ai-tutorial

Workshop:

ISWC 2019 Workshop on Semantic Explainability (#1) - http://www.semantic-explainability.com/

1JCAI 2019 Workshop on Explainable Artificial Intelligence (#3) - https://sites.google.com/view/xai2019/home 55 paper submitted in 2019

1JCAI 2019 Workshop on Optimisation and Explanation in Al (#1) - https://www.doc.ic.ac.uk/~kc2813/0OXAl/

SIGIR 2019 Workshop on Explainable Recommendation and Search (#2) https://ears2019.github.io/

ICAPS 2019 Workshop on Explainable Planning (#2)- https://kcl-planning.github.io/XAIP-Workshops/ICAPS 2019 23 papers submitted in 2019 https://openreview.net/group?id=icaps-
conference.org/ICAPS/2019/Workshop/XAIP

KDD 2019 Workshop on Explainable Al for fairness, accountability, and transparency (#1) — https://xai.kdd2019.a.intuit.com

ICCV 2019 Workshop on Interpreting and Explaining Visual Artificial Intelligence Models (#1) - http://xai.unist.ac.kr/workshop/2019/

NeurlPS 2019 Workshop on Challenges and Opportunities for Al in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy - https://sites.google.com/view/feap-ai4fin-2018/

CD-MAKE 2019 — Workshop on Explainable Al (#2) - https://cd-make.net/special-sessions/make-explainable-ai/

AAAI 2019 / CVPR 2019 Workshop on Network Interpretability for Deep Learning (#1 and #2) - http://networkinterpretability.org/ - https://explainai.net/

IEEE FUZZ 2019 / Advances on eXplainable Artificial Intelligence (#2) - https://sites.google.com/view/xai-fuzzieee2019

International Conference on NL Generation - Interactive Natural Language Technology for Explainable Artificial Intelligence (EU H2020 NL4XAl; #1) - https://sites.google.com/view/nl4xai2019/

Challenge:

2018: FICO Explainable Machine Learning Challenge (#1) - https://community.fico.com/s/explainable-machine-learning-challenge



https://xaitutorial2019.github.io/
http://interpretable-ml.org/icip2018tutorial/
http://interpretable-ml.org/embc2019tutorial/
https://interpretablevision.github.io/
https://sites.google.com/view/kdd19-explainable-ai-tutorial
http://www.semantic-explainability.com/
https://sites.google.com/view/xai2019/home
https://www.doc.ic.ac.uk/~kc2813/OXAI/
https://ears2019.github.io/
https://kcl-planning.github.io/XAIP-Workshops/ICAPS_2019
https://openreview.net/group?id=icaps-conference.org/ICAPS/2019/Workshop/XAIP
https://xai.kdd2019.a.intuit.com/
http://xai.unist.ac.kr/workshop/2019/
https://sites.google.com/view/feap-ai4fin-2018/
https://cd-make.net/special-sessions/make-explainable-ai/
http://networkinterpretability.org/
https://explainai.net/
https://sites.google.com/view/xai-fuzzieee2019
https://sites.google.com/view/nl4xai2019/
https://community.fico.com/s/explainable-machine-learning-challenge

(Some) Software Resources

DeepExplain: perturbation and gradient-based attribution methods for Deep Neural Networks interpretability. github.com/marcoancona/DeepExplain

iNNvestigate: A toolbox to iNNvestigate neural networks' predictions. github.com/albermax/innvestigate

SHAP: SHapley Additive exPlanations. github.com/slundberg/shap

Microsoft Explainable Boosting Machines. https://github.com/Microsoft/interpret

GANDissect: Pytorch-based tools for visualizing and understanding the neurons of a GAN. https://github.com/CSAILVision/GANDissect

ELIS: A library for debugging/inspecting machine learning classifiers and explaining their predictions. github.com/TeamHG-Memex/eli5

Skater: Python Library for Model Interpretation/Explanations. github.com/datascienceinc/Skater

Yellowbrick: Visual analysis and diagnostic tools to facilitate machine learning model selection. github.com/DistrictDatalLabs/yellowbrick

Lucid: A collection of infrastructure and tools for research in neural network interpretability. github.com/tensorflow/lucid

LIME: Agnostic Model Explainer. https://github.com/marcotcr/lime

Sklearn_explain: model individual score explanation for an already trained scikit-learn model. https://github.com/antoinecarme/sklearn_explain

Heatmapping: Prediction decomposition in terms of contributions of individual input variables

Deep Learning Investigator: Investigation of Saliency, Deconvnet, GuidedBackprop and more. https://github.com/albermax/innvestigate

Google PAIR What-if: Model comparison, counterfactual, individual similarity. https://pair-code.github.io/what-if-tool/

Google tf-explain: https://tf-explain.readthedocs.io/en/latest/

IBM Al Fairness: Set of fairness metrics for datasets and ML models, explanations for these metrics. https://github.com/IBM/aif360

Blackbox auditing: Auditing Black-box Models for Indirect Influence. https://github.com/algofairness/BlackBoxAuditing

Model describer: Basic statiscal metrics for explanation (visualisation for error, sensitivity). https://github.com/DataScienceSquad/model-describer

AXA Interpretability and Robustness: https://axa-rev-research.github.io/ (more on research resources — not much about tools)



http://github.com/marcoancona/DeepExplain
https://github.com/albermax/innvestigate
https://github.com/slundberg/shap
https://github.com/Microsoft/interpret.
https://github.com/CSAILVision/GANDissect
https://github.com/TeamHG-Memex/eli5
https://github.com/datascienceinc/Skater
https://github.com/DistrictDataLabs/yellowbrick
https://github.com/tensorflow/lucid
https://github.com/marcotcr/lime
https://github.com/antoinecarme/sklearn_explain
https://github.com/albermax/innvestigate
https://pair-code.github.io/what-if-tool/
https://tf-explain.readthedocs.io/en/latest/
https://github.com/IBM/aif360
https://github.com/algofairness/BlackBoxAuditing
https://github.com/DataScienceSquad/model-describer
https://axa-rev-research.github.io/

(Some) Initiatives: XAl in USA

Challenge § TA 1:
Problem Explainable
Learners

Teams that provide
prototype systems
with both

components:

« Explainable
Model

« Explanation
Interface

Autonomy
ArduPilot &
SITL Simulation

TAl: Explainable Learners

Deep
Learning
Teams

G fige

(kb BEFE

Interpretable
Model

Teams

E% Model

Model
Induction
Teams

Evaluator

TA 2:
Psychological
Model of
Explanation

* Psych. Theory
of Explanation
» Computational

Model
» Consulting

2 Explainable learning systems that include both an explainable model and an explanation interface

TA2: Psychological Model of Explanation

Learning
Performance

Explanation
Effectiveness

Explanation
Measures

» User Satisfaction
Mental Model
Task Performance
Trust Assessment
Correctability

2 Psychological theories of explanation and develop a computational model of explanation from those theories



(Some) Initiatives: XAl in Canada
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(Some) Initiatives: XAl in EU
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Conclusion




Why do we Need XAl by the Way?

e To empower individual against undesired effects of automated decision
making

* To reveal and protect new vulnerabilities
* To implement the “right of explanation”

e To improve industrial standards for developing Al-powered products,
increasing the trust of companies and consumers

* To help people make better decisions

* To align algorithms with human values

 To preserve (and expand) human autonomy
* To scale and industrialize Al




Conclusion

* Explainable Al is motivated by real-world applications in Al
* Not a new problem — a reformulation of past research challenges in Al
e Multi-disciplinary: multiple Al fields, HCI, social sciences (multiple definitions)

* In Al (in general): many interesting / complementary approaches

* Many industrial applications already — crucial for Al
adoption in critical systems




Open Research Questions

* There is no agreement on what an explanation is
* There is not a formalism for explanations

* There is no work that seriously addresses the problem of
quantifying the grade of comprehensibility of an explanation
for humans

* Is it possible to join local explanations to build a globally
interpretable model?

* What happens when black box make decision in presence of
latent features?

* What if there is a cost for querying a black box?




Future Challenges

* Creating awareness! Success stories!
* Foster multi-disciplinary collaborations in XAl research.
* Help shaping industry standards, legislation.

* More work on transparent design.

* Investigate symbolic and sub-symbolic reasoning.

* Evaluation:
* We need benchmark - Shall we start a task force?
 We need an XAl challenge - Anyone interested?
* Rigorous, agreed upon, human-based evaluation protocols
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