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Knowledge Graphs are graph-structured Knowledge Bases, where knowledge is
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Knowledge Graphs

Knowledge Graphs are graph-structured Knowledge Bases, where knowledge is
encoded by relationships between entities.
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Industry-Scale Knowledge Graphs

In many enterprises, Knowledge Graphs are critical — they provide structured data
and factual knowledge that drives many products, making them more “intelligent”.



Industry-Scale Knowledge Graphs in Microsoft
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Industry-Scale Knowledge Graphs in Google

The Google Knowledge Graph contains more
than 70 billion assertions describing a billion
entities and covers a variety of subject matter
— “things not strings”.

Used for answering factoid queries about
entities served from the Knowledge Graph.

1 Billion entities, ~70 Billion assertions
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Capital of South Korea

Seoul, the capital of South Korea, is a huge metropolis where
modern skyscrapers, high-tech subways and pop culture meet
Buddhist temples, palaces and street markets. Notable attractions
include futuristic Dongdaemun Design Plaza, a convention hall with
curving architecture and a rooftop parl: R annahaliniina Dalana
which once had more than 7,000 rool population in Seoul

of ancient locust and pine trees.

Area: 605.2 km? Q Al & Images & News (8 Maps
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Weather: 23 °C, Wind NW at 2 mph Seoul / Population
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World’s largest social graph — Facebook’s Knowledge

Industry-Scale Knowledge Graphs in Facebook

Graph focuses on socially relevant entities, such as
celebrities, places, movies, and music. Used to
recommend smart replies, entity detection, and easy
Sharing.
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The Linked Open Data Cloud

Linked Open Data cloud - over 1200
interlinked KGs encoding more than 200M
facts about more than 50M entities.

Spans a variety of domains, such as
Geography, Government, Life Sciences,
Linguistics, Media, Publications, and Cross-
domain

Name Entities @ Relations @ Types
Freebase 40M 35K 26.5K
DBpedia (en) 4.6M 1.4K 735
YAGO3 17M 77 488K
Wikidata 15.6M 1.7K 23.2K

Facts
637M
580M

150M
66M

e Lk opr 33 it ok -



Knowledge Graphs and Explainable Al
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Knowledge Graphs and Explainable Al
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We can use Knowledge Graphs
for explaining the decisions of
Machine Learning algorithms,
such as recommender systems,
and design machine learning
models that are less prone to
capturing spurious correlations
in the data.

loU 0.0

 Locally vs. Globally
* Ad-hoc vs. Post-hoc

grass tree sky painting

Network Dissection: Quantifying Interpretability of Deep Visual Representations
On the Role of Knowledge Graphs in Explainable Al - SWJ



Knowledge Graphs and Explainable Al

We can use Knowledge Graphs
for explaining the decisions of
Machine Learning algorithms,
such as recommender systems,
and design machine learning
models that are less prone to
capturing spurious correlations
in the data.
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Knowledge Graphs Construction

Knowledge Graph construction methods can be classified in:

e Manual — curated (e.g. via experts), collaborative (e.g. via volunteers)

e Automated — semi-structured (e.g. from infoboxes), unstructured (e.g. from text)
Coverage is an issue:

e Freebase (40M entities) - 71% of persons without a birthplace, 75% without a
nationality, even worse for other relation types [Dong et al. 2014]

e DBpedia (20M entities) - 61% of persons without a birthplace, 58% of scientists
missing why they are popular [KrompaB et al. 2015]

Relational Learning can help us overcoming these issues and - in general - with
learning from relational representations.



Relational Learning in Knowledge Graphs

e Dyadic Multi-Relational Data [Nickel et al. 2015, Getoor et al. 2007]

e Many possible relational learning tasks:

Link Prediction — Identify missing relationships between entities
Collective Classification — Classify entities based on their relationships
Link-Based Clustering — Cluster entities based on their relationships
Entity Resolution — Entity mapping/deduplication

o O O O

Relational structure is a rich source of information.
In general, the i.i.d. assumption does not hold in this context.



Statistical Relational Learning

Task — model the existence of each triple x,,, = (5,p,0) € EX Z X & as
binary random variables Y,,, € {0,1} indicating whether Xy, is in the KG:

1 if €Y L
Yspo = { Hspo entries in Y € {0,1}IEXIZIxI&]
0 otherwise

Every realisation of Y denotes a possible world - modelling P (7) allows
predicting triples based on the state of the entire Knowledge Graph.

Scalability is important - e.g. on Freebase (40M entities), the number of variables
to represent can be quite large: | & X % X &| > 10"



Types of Statistical Relational Learning Models

Depending on our assumptions on P (Y) , we end up with three model classes:
* Latent Feature Models: variables Ysp, € {0.1} are conditionally independent
given the latent features ® associated with subject, predicate, and object:

VX, , EEXAEXE,x;#x:y; 1Ly | O

e Observable Feature Models: related to Latent Feature Models, but ® are now
graph-based features, such as paths linking the subject and the object.

® Graphical Models: variables y,,, € {0,1} are not assumed to be conditionally
independent — each Yspo can depend on any of the other random variables in Y .



Conditional Independence Assumption

Assuming all Y, variables are conditionally independent allows modelling their
existence via a scoring function f (s,p,o | ®) representing the likelihood that a triple
is in the KG, conditioned on the parameters @ :

-

B P <ysp0 | @) if v, = 1
pYie)=]T11]1-
sc&pekocs | 1 —P (yspo | G)) otherwise

L

with P (v, 1©) = o (f(s.p.0 1 ©))

Scoring Function - depending on the type of features used by f( | @) we have
two families of models - Observable and Latent Feature Models.



Observable Feature Models

Uni-Relational Similarity Measures: based on homophily — similar entities are
likely to be related — and neighbourhood similarity.

e Local: derive similarity between entities from their local neighbourhood
(e.g. Common Neighbours, Adamic-Adar Index [Adamic et al. 2003], Preferential Attachment [Barabasi et al. 1999], ..)

e Global: derive similarity between entities using the whole graph
(e.g. Katz Index [Katz, 1953], Leicht-Holme-Newman Index [Leicht et al. 2006], PageRank [Brin et al. 199g], ..)

® Quasi-Local: trade-off between computational complexity and predictive accuracy
(e.g. Local Katz Index [Liben-Nowell et al. 2007], Local Random Walks [Liu et al. 2010], ..)



Observable Feature Models - Rule Mining and ILP

Rule Mining and Inductive Logic Programming methods extract rules via
mining methods, and use them to infer new links.

e Logic Programming (deductive): from facts and rules, infer new facts (First-Order Logic)

¢ Inductive Logic Programming (ILP): from correlated facts, infer new rules
(e.g. Progol Muggleton, 1993], Aleph [Srinivasan, 1999], DL-Learner [Lehmann, 2009], FOIL [Quinlan, 1990], ..)

® Rule Mining: AMIE [Galarraga et al. 2015] iS orders of magnitude faster than traditional ILP
methods, and consistent with the Open World Assumption in Knowledge Graphs:
e Partial Completeness Assumption
® Efficient search space exploration via Mining Operators



Observable Feature Models - Path Ranking Algorithm

Path Ranking Algorithm (PRA) uses length-bounded random walks as features
between entity pairs for predicting a target relation [Lao et al. 2010].

Homer A PRA model scores a subject-object pair by a
linear function of their path features:

Ape P O peremtlt o
O/ \O f(s,p,0) = ZP(S—>0 | ]Z')Xeﬂ,p

grandParentOf
mlIl,
livesIn livesIn™! .
where I1 is the set of all length-bounded

relation paths, and @ are parameters estimated
via L1,L2-regularised logistic regression.

Springfield

Some extensions: Subgraph Features [Gardner et al. 2015], Multi-Task [wang et al. 2016]



Observable Feature Models are Interpretable

Rules extracted by AMIE+ [Galarraga et al. 2015] from the YAGO3-10 dataset [Dettmers et al. 2018]

Body = Head Confidence

hasNeighbor(X, Y) = hasNeighbor(Y, X) 0.99

isMarriedTo(X,Y) = isMarriedTo(Y, X) 0.96

hasNeighbor(X, Z) A hasNeighbor(Z,Y) = hasNeighbor(X,Y) 0.88
isAffiliatedTo(X,Y) = playsFor(Y, X) 0.87

playsFor(X,Y) = isAffiliatedTo(Y, X) 0.75

dealsWith(X,Z) AdealsWith(Z,Y) = dealsWith(X,Y) 0.73
isConnectedTo(X, Y) = isConnectedTo(Y, X) 0.66

dealsWith(X,Z) A imports(Z,Y) = imports(X,Y) 0.61

influences(Z,X) A isInterestedIn(Z,Y) = isInterestedIn(X,Y) 0.53



Latent Feature Models

Variables Yspo are conditionally independent given a set of latent features and
parameters @ . Latent means that are not directly observed in the data, and thus
need to be estimated.

Relationships between entities s and o can be inferred

4 (- \ 7\  from the interactions of their latent features e, e :
e e $? o
S o
@ o) =feney { TR
sS,p,0) =1 (€.e
pr-s o . Mk k
S €% - Y, 0€E) ];.R X R R
@ The latent features inferred by these models can be
 re% very hard to interpret.




Latent Feature Models
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Latent Feature Models
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Latent Feature Models - Scoring Functions

Relationships between entities are determined by interactions between latent
features — this yields different choices for the scoring function f, : R xR*— R :

RESCAL [Nickel et al. 2011] e, We, W, € RP*
NTN [Socher et al. 2013] u, f (esW,[}‘--‘” +V, 2 + b,,) W, e R4V e R4 b u € Rk
TransE [Bordes et al. 2013] - | €+r,—¢ " r, € R¥
DistMult [Yang et al. 2014] (e,.r,.e,) r, € R
HolE [Nickel et al. 2016] r, (.%‘ - [FleJoF [eo]]) r, € R¥
ComplEx [Trouillon et al. 2016] Re ((es, r, Ea)) r, € ck

ConvE [Dettmers et al. 2017] f (Vec <f ([e_s; l'_p] *a))) W) e, r, S IRk, W e Rexk
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Latent Feature Models - Learning

Another core differente among models is the loss function minimised for fitting the
latent parameters @ to the data — let f,,, =f (xspo | @) and p,, = 0( Spo) ;

Z | y f. ’ Tensor Factorisation

| — isation,

Quadratic Loss e spo  Jspo RESCAL (ALS)

e._g. .
el less 2 2 Zlr.x) S max {0’7 +f ﬁu} SE, NTN, TransE, HolE

X, €D, x €D_

Cross-Entropy Loss Z [y log (px) + (1 = y)log (1 —Px)l ComplEx
(x)ED

ConvE, ComplEx-N3
Multiclass Loss Z = (pspo,l) + Z Z(p spo> Y §p0) + Z = (pSP5’ySP5) [Dettmers et al. 2017,
Xpo€D 4 5e& 0EE Lacroix et al. 2018]




Latent Feature Models - Predictive Accuracy

Evaluation Metrics — Area Under the Precision-Recall Curve (AUC-PR), Mean
Reciprocal Rank (MRR), Hits@k. In MRR and Hits @k, for each test triple:
- Modify its subject with all the entities in the Knowledge Graph,
« Score all the triple variants, and compute the rank of the original test triple,
* Repeat for the object.

1 & 1 rank; < 10
MRR:—Z , HITS@kzl{ : /
| 7| < rank; | T |
From [Lacroix et al. ICML 2018]

Model WN18 WNI18RR FB15K FB15K-237 YAGO3-10
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H®@10
CP-FRO 0.95 095 046 048 0.86 091 034 051 054 0.68
CP-N3 0.95 096 047 054 0.86 091 036 054 057 0.71

ComplEx-FRO 0.95 096 047 054 0.86 091 035 053 057 0.71
ComplEx-N3 0.95 096 0.48 0.57 086 091 0.37 0.56 0.58 0.71

Reciprocal




Predicates

Latent Feature Models - Interpreting the Embeddings

Learned relation embeddings — using ComplEx with a pairwise margin-based loss
— for WordNet (left), DBpedia, and YAGO (right) inervini et ai. ECML 2017]

Real Part Imaginary Part
)Y/oL=Tun)Y/ 0 I NO] 3.0 -3.1/2:6-2.7 3.2 2.9 kW4-3.0-3.0
[\Yoleln\Ins IO 3.1 -3.1§216=2.7]-3.4 -2:85 W4 2.9 3.0
synset domain topic of Fell2 3.2-2.4-3.05K:-2.9-2.8 2.6
member of domain topic FelEY 3.2-252.8K842.9 2.9 -2.6
member of domain usage -1.4-0.1PEWFIEN] 1.8PX]-0.6-1.3 associated musical arist ENACIZARNARY: Rl 0.7 0.1 0.2 -1.5 1.5
synset domain usage of -1.2-0.1-2.3%ke} 75| kEN-1.8525 0.7 1.4 associated band ENARNACPAKRNAREN 0.7 0.0 0.2 -1.5 1.5
instance hypernym -1 .1 16 3.0-2626% .1
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member of domain region [K]-0.3ERAR120 1.0 2422 13 -1.1 isMarriedTo EREEECEIRIN . 0.0 0.0

verb group EEIRRIREJBEX; 0.0-0.10.0 0.0 0.0 isConnectedTo -0.7 [l 21 0.3 0.3
derivationally related form 0.0 0.0-0.00.0 0.0

Real Part Imaginary Part
musical arist 1.9 ERIERY-1.7 -1.0 0.4 -0.8 FTIEN,

musical band 1.8 [ERIPRE-1.8 -1.o RN 3.1 36
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Predicates

Latent Feature Models - Interpreting the Embeddings

Learned relation embeddings — using ComplEx with a pairwise margin-based loss
— for WordNet (left), DBpedia, and YAGO (right) inervini et ai. ECML 2017]

Real Part Imaginary Part
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Latent Feature Models - Post Hoc Interpretability

Generate an explanation model by training Bayesian Networks or Association Rules
on the output of a Latent Feature Model. [carmona et al. 2015, Peake et al. KDD 2018, Gusmao et al. 2018]

RECOMMENDATION MODEL EXPLANATION MODEL
usedto usedto
Input: train Model: L OQutput: train Model: JeUeines Output:

N . ) . . - . —, Top Nassociation rule
User-itemrating ——— Matrix Factorisation —— User-item rating =~ Association Rules

; ) B . recommendations per
matrix, R (black-box) predictions matrix, R (white-box) user and explanations
Rule Supp Conf Lift
filtered .
A= B 0.4 0.7 1 filtered
A= C 0.6 0.4 0.9
Output: B =D 02 08 16 Output:
Top N matrix factorisation Association rules for
recommendations per matrix factorisation
user predictions

User | Recommendation User Recommendation Explanation

1 B 1 B A=B

2 C 2 C A=C

3 D 3 D B=D




Combining Observable and Latent Feature Models

o Additive Relational Effects (ARE) (Nickei et ai. NeurPs 2014 — combines Observable
and Latent Features in a single linear model:
ARE _
Spo WLFM,p®LFM SO + WOBS p®PRA SO
e Knowledge Vault [pong et a1 koD 2014) — combines the prediction of Observable and

Latent Feature Models via stacking:

— f OFM LFM
spo FUSION \J spo >Jspo

® Adversarial Sets vinervini et al. UAI 2017) — incorporate observable features, in the
form of First-Order Logic Rules R, in Latent Feature Models:

SCA(E)



End-to-End Differentiable Reasoning

We can combine neural networks and symbolic models by re-implementing classic
reasoning algorithms using end-to-end differentiable (neural) architectures:

Differentiable Architectures
e Can generalise from high-dimensional,
noisy, ambiguous inputs (e.g. sensory)
® Not interpretable
® Hard to incorporate knowledge
e Propositional fixation vccarthy, 1988]

Logic Reasoning Based Models
e Can learn from small data
® |ssues with high-dimensional, noisy,
ambiguous inputs (e.g. images)
e Easy to interpret, and can provide
explanations in the form of reasoning
steps used to derive a conclusion



Reasoning in a Nutshell — Forward Chaining

Forward Chaining — start with a list of facts, and work
forward from the antecedent P to the consequent Q iteratively.

X) « p(X
»(a) qg(X) < p(X)

p(b)
p(c)



Reasoning in a Nutshell — Forward Chaining

Forward Chaining — start with a list of facts, and work
forward from the antecedent P to the consequent Q iteratively.

X) <« p(X
p@ PO @

------------------- * p(b),q(b)
p(c) p(c), q(c)



Reasoning in a Nutshell — Backward Chaining

Backward Chaining — start with a list of goals, and work
backwards from the consequent Q to the antecedent P to see if
any data supports any of the consequents.

g(X) < p(X)

p(a) g(a)? You can see backward chaining
(b) as a query reformulation strategy.
P

p(c)



Reasoning in a Nutshell — Backward Chaining

Backward Chaining — start with a list of goals, and work
backwards from the consequent Q to the antecedent P to see if
any data supports any of the consequents.

g(X) < p(X)

p(a) g(a)? . You can see backward chaining
* as a query reformulation strategy.

p(b) y
p(c) pla)



Reasoning in a Nutshell — Backward Chaining

Backward Chaining — start with a list of goals, and work
backwards from the consequent Q to the antecedent P to see if
any data supports any of the consequents.

q(X) < p(X)
p(a) g(a)? . You can see backward chaining
(b) LA % as a query reformulation strategy.
P K
-- pla)



Differentiable Forward Chaining - 0ILP (cvans etz sair 2019

JILP uses a differentiable model of forward chainin
inference: (At (R
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\ valuation
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M generate

® @ program template

clause weights




Differentiable Forward Chaining - 0ILP (cvans etz sair 2019

JILP uses a differentiable model of forward chaining

inference:
- Weights of the network represent a probability

distribution over clauses

conclusion
valuation

/" initial

\ valuation

N
m generate

clause weights

® @ program template




Differentiable Forward Chaining

JILP uses a differentiable model of forward chaining

inference:

- Weights of the network represent a probability
distribution over clauses

- Avaluation is a vector with values in [0, 1]
representing how likely it is that each of the
ground atoms is true

« Forward chaining is implemented by a
differentiable function that, given a valuation
vector, produces another by applying rules to it.

- alLP [Evans et al. JAIR 2018]

conclusion
valuation

/" initial

\ valuation clause weights

N
m ‘ generate ’

® @ program template




Differentiable Forward Chaining - 0ILP (cvans etz sair 2019

JILP uses a differentiable model of forward chaining

inference:

- Weights of the network represent a probability
distribution over clauses

- Avaluation is a vector with values in [0, 1]
representing how likely it is that each of the
ground atoms is true

« Forward chaining is implemented by a
differentiable function that, given a valuation
vector, produces another by applying rules to it.

- If conclusions do not match the desired ones, the
error is back-propagated to the weights.

conclusion
valuation

/" initial

\ valuation clause weights

N
m ‘ generate ’

® @ program template




Differentiable Forward Chaining - 0ILP (cvans etz sair 2019

JILP uses a differentiable model of forward chaining
inference:
- Weights of the network represent a probability
distribution over clauses
- Avaluation is a vector with values in [0, 1]
representing how likely it is that each of the
ground atoms is true
« Forward chaining is implemented by a
differentiable function that, given a valuation
vector, produces another by applying rules to it.
- If conclusions do not match the desired ones, the
error is back-propagated to the weights.
We can extract a readable program.

conclusion
valuation

/" initial

\ valuation clause weights

N
m ‘ generate ’

® @ program template




Differentiable Forward Chaining - 0ILP (cvans etz sair 2019

@ @ @ cycle(X) « pred(X, X)

. pred(X,Y) < edge(X,Y)
S pred(X, Y) « edge(X, Z), pred(Z, Y)




Differentiable Forward Chaining - 0ILP (cvans etz sair 2019

I -1
202

3 Fizz
44

5 — Buzz
6 — Fizz
T
8 8

O — Fizz
10 » Buzz

fizz(X) <« zero(X)

fizz(X) « fizz(Y), pred1(Y, X)
pred1(X,Y) « succ(X, Z),pred2(Z,Y)
pred2(X,Y) < succ(X, Z),succ(Z,Y)



Backward Chaining — Differentiable Proving

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]

Backward Chaining

q(X) < p(X)
pla) q(a)? .
pb) .Y J
"""" p(a)

p(c)



Backward Chaining — Differentiable Proving

Backward Chaining

g(X) < p(X)
p(d)v g(a)? ,
p(b) ..

~

p(c) e pla)

S m

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]

BUT there’s a problem..

grandPa0f (abe, bart)
4 3

1 X RN
X v oo

grandFatherOf (abe, bart)



Backward Chaining — Differentiable Proving

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]

grandPalf (abe, bart)

 HEgNT e
v v
sim=0.9 sim

v v v
grandFather0f (abe, bart)

4

=1 sim =1




Backward Chaining — Differentiable Proving

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]
Knowledge Base:

grandPa(f(abe, bart)

father0f(abe, homer) 1 CEOCLT

parent(f(homer, bart)
grandFather0f(X,Y) «
father0f(X,Z2),
parent0f(Z,Y).




Backward Chaining — Differentiable Proving

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]
Knowledge Base:

grandPa(f(abe, bart)

father0f(abe, homer) 1 CEOCLT

parent(f(homer, bart)
grandFather0f(X,Y) < father0f(abe, homer)

father0f(X.2), L] C 11

parent0f(Z,Y). proof score S,




Backward Chaining — Differentiable Proving

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]
Knowledge Base:

grandPa(f(abe, bart)

father0f(abe, homer) 1 CEOCT

parent(f(homer, bart)

grandFather0f(X,Y) « fatherOf(abe,homer) parent(Of(homer,bart)

father0f(X,2), AT (INDN) CIOC) (NN (B (T

parent0f(Z,Y). proof score S, proof score S,




Backward Chaining — Differentiable Proving

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]
Knowledge Base:

grandPa(f(abe, bart)

father0f(abe, homer) 1 CEOCT

parent(f(homer, bart)

grandFather0f(X,Y) « fatherOf(abe,homer) parent(Of(homer,bart)

father(0f(X,2), AT (INDN) CIOC) (NN (B (T

parent0f(Z,Y). proof score S, proof score S,

grandFather0f(X,Y)

BT ] x/abe Y/vart Subgoals:
proof score S father0Of(abe, Z)

parent0f(Z,bart)



Backward Chaining — Differentiable Proving

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]
Knowledge Base:

grandPa(f(abe, bart)

father0f(abe, homer) 1 CEOCT

parent(f(homer, bart)

grandFather0f(X,Y) « fatherOf(abe,homer) parent(Of(homer,bart)

father(0f(X,2), AT (INDN) CIOC) (NN (B (T

parent0f(Z,Y). proof score S, proof score S,
fatherOf(abe, Z) grandFather0f(X,Y)
B Dl - B[] x/abe Y/bary Subgoals:
roof score S, fatherOf(abe, Z)

proof score S, V\P
—— parent0f(Z,bart)




Backward Chaining — Differentiable Proving

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]
Knowledge Base:

grandPa(f(abe, bart)

father0f(abe, homer) 1 CEOCT

parent(f(homer, bart)

grandFather0f(X,Y) « fatherOf(abe,homer) parent(Of(homer,bart)

father(0f(X,2), AT (INDN) CIOC) (NN (B (T

parent0f(Z,Y). proof score S, proof score S,
fatherOf(abe, Z) grandFather(0f(X,Y)
B Bl - B x/abe vivary Subgoals:
roof score S, fatherQOf(abe, Z)

proof score S, '\p
‘ — parent0f(Z, bart)

fatherOf(abe, homer)

proof score S;




Learning Interpretable Rules From Data

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]
Knowledge Base:

grandPa(f(abe, bart)

fatherOf(abe, homer) 1 - l

parent(f(homer, bart)

0,(X,Y) <= 0,X,Z),0,(Z,Y) fatherOf(abe,homer) parent0f(homer,bart)

T O (T R O ) 7

proof score S, proof score S,

Training dFather0f(X, Y
Maximise Log-Likelihood: father0i(abe,Z) grandFatherQf(X, ¥)

 WEE B X/abe Y/vary Subgoals:
Z log pKB\F(F ) proof score S, v\proof score S, fatherOf(abe, Z)

FeK ‘ — parent0f(Z,bart)

— Z log pXB(F) father0f(abe, homer)

F~corr(F) -j - I:.j * e

proof score S;




Differentiable Reasoning

Corpus | Metric Model Examples of induced rules and their confidence
] ComplEx NTP NTPA
S1 | AUC-PR 99.37+0.4 90.83+154 100.00+ 0.0 | 0.90 locatedIn(X,Y) :— locatedIn(X,Z), locatedIn(Z,Y).
Countries S2 | AUC-PR 87.95+2.8 87.40+11.7 93.04+ 0.4 | 0.63 locatedIn(X,Y) :—neighbor0f(X,Z), locatedIn(Z,Y).
S3 | AUC-PR  48.44+6.3 56.68+17.6 77.26 £17.0 | 0.32 locatedIn(X,Y) :—
neighbor0£f(X,Z), neighbor0f(Z,W), locatedIn(W,Y).
MRR 0.81 0.60 0.80 | 0.98 term15(X,Y) —term5(Y,X)
Kinshi HITS@1 0.70 0.48 0.76 | 0.97 term18(X,Y) :—termi18(Y,X)
p HITS@3 0.89 0.70 0.82 | 0.86 termd(X,Y) — termd(Y,X)
HITS@10 0.98 0.78 0.89 | 0.73 term12(X,Y) :—terml10(X, Z), termi12(Z, Y).
MRR 0.75 0.75 0.74 | 0.68 blockpositionindex(X,Y) :—blockpositionindex(Y,X).
Nations HITS@1 0.62 0.62 0.59 | 0.46 expeldiplomats(X,Y) :—negativebehavior(X,Y).
HITS@3 0.84 0.86 0.89 | 0.38 negativecomm(X,Y) :— commonblocO(X,Y).
HITS@10 0.99 0.99 0.99 | 0.38 intergovorgs3(X,Y) :— intergovorgs(Y,X).
MRR 0.89 0.88 0.93 | 0.88 interacts_with(X,Y) -
UMLS HITS@1 0.82 0.82 0.87 interacts_with(X,Z), interacts_with(Z,Y).
HITS@3 0.96 0.92 0.98 | 0.77 isa(X,Y) :—isa(X,Z), isa(Z,Y).
HITS@10 1.00 0.97 1.00 | 0.71 derivative_of(X,Y) :—
derivative_of(X,Z), derivative_of(Z,Y).




Explainable Neural Link Prediction

Query Score S, Proofs/Explanations
part_of(X,Y):—has_part(Y,X)

0.995
has_part(AFRICA.N.01, CONGO.N.03)
"ONGO.N.03 "A.N. .’
part_of(CONGO.N.03, AFRICA.N.01) 0.787 part_of(X,Y):—instance_hyponym(Y, X)
: instance_hyponym(AFRICAN_COUNTRY.N.O1, CONGO.N.03)
" 0.987 hyponym(X,Y) :— hypernym(Y, X)
Z hyponym(EXTINGUISH.V.04, DECOUPLE.V.03) : hypernym(DECOUPLE.V.03, EXTINGUISH.V.04)
= 0.920 hypernym(SNUFF_OUT.V.01, EXTINGUISH.V.04)
part_of(PITUITARY.N.O1, DIENCEPHALON.N.0O1) 0.995 has_part (DIENCEPHALON.N.O1, PITUITARY.N.01)
has_part(X,Y) :—part_of(Y,X)
has_part(TEXAS.N.01, ODESSA.N.02) 0.961 part_of(ODESSAN.02, TEXAS.N.01)
hyponym(SKELETAL_MUSCLE, ARTICULAR_MUSCLE) 0.987 hypernym(ARTICULAR_MUSCLE, SKELETAL_MUSCLE)
deriv_related_form(REWRITE,REWRITING) 0.809 deriv_related_form(X,Y) :- hypernym(Y,X)
hypernym(REVISE, REWRITE)
0.962 also_see(X,Y):—also_see(Y,X)
é also_see(TRUE.A.01,FAITHFUL.A.01) ' also_see(FAITHFUL.A.01, TRUE.A.01)
® 0.590 also_see(CONSTANT.A.02, FAITHFUL.A.O1)
Z .
= also_see(GOOD.A.03, VIRTUOUS.A.01) 0.962 also_see(VIRTUOUS.A.01,GOOD.A.03)

0.702 also_see(RIGHTEOUS.A.01, VIRTUOUS.A.01)
instance_hypernym(CHAPLIN, FILM_MAKER) 0.812 instance_hypernym(CHAPLIN, COMEDIAN)
D




Reasoning Over Text

We can embed facts from the KG and facts from text in a shared
embedding space, and learn to reason over them jointly:

—
| encoder | | encoder |
r N\ (
RO
LI
0)010
ago : 4 = 4 A A
L KB Rep. JL Text Representations ) Rule Group p(X, Y) :-q(X, Z), r(Z, Y)
containedIn(River “London is located in the UK” “[X] is located in the [Y]"(X, Y) :- locatedIn(X, Y) :- locatedIn(X, Z), locatedIn(Z, Y)
Thames, UK) locatedIn(X, Y)

“London is standing on the
River Thames”



Reasoning Over Text

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]

We can embed facts from the KG and facts from text in a shared
embedding space, and learn to reason over them jointly:

Control Myself record label Jam Recordings
record label(X, Z) « p; (X, Y)

P1(X, Z) « pa(X,Y) A p3 (Y,2)

Control Myself [...] is a song by american rapper [...] Ell
Ell cools 1989 album [...] was released by [...] Jam Recordings



Reasoning Over Text

[Rocktaschel et al. 2017, Minervini et al. 2018,
Welbl et al. 2019]

We can embed facts from the KG and facts from text in a shared
embedding space, and learn to reason over them jointly:

Thrasyvoulos F.C. country Greece

/

country(X, Z) < p; (X, Y)

P1(X, Z) < pa2(X,Y) A p3 (Y.Z)

\

Thrasyvoulos Fylis is a football club based in Fyli, Attica [...]
Fyli is a town and a municipality in the northwestern part of Attica, Greece



Neuro-Symbolic Integration — Recent Advances

® Recursive Reasoning Networks [Hohenecker et al. 2018) — given a OWL RL ontology,
uses a differentiable model to update the entity and predicate representations.

® Deep ProbLog manhaeve et al. NeurlPs 2018 — extends the ProblLog probabilistic logic
programming language with neural predicates that can be evaluated on e.qg.
sensory data (images, speech).

® | ogic Tensor Networks [serafini et al. 2016, 20171 — fully ground First Order Logic rules.

e AutoEncoder-like Architectures [campero et al. 2018) — use end-to-end differentiable
reasoning in the decoder of an autoencoder-like architecture to learn the
minimal set of facts and rules that govern your domain via backprop.
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